1,640 research outputs found
Delta Doping of Ferromagnetism in Antiferromagnetic Manganite Superlattices
We demonstrate that delta-doping can be used to create a dimensionally
confined region of metallic ferromagnetism in an antiferromagnetic (AF)
manganite host, without introducing any explicit disorder due to dopants or
frustration of spins. Delta-doped carriers are inserted into a manganite
superlattice (SL) by a digital-synthesis technique. Theoretical consideration
of these additional carriers show that they cause a local enhancement of
ferromagnetic (F) double-exchange with respect to AF superexchange, resulting
in local canting of the AF spins. This leads to a highly modulated
magnetization, as measured by polarized neutron reflectometry. The spatial
modulation of the canting is related to the spreading of charge from the doped
layer, and establishes a fundamental length scale for charge transfer,
transformation of orbital occupancy and magnetic order in these manganites.
Furthermore, we confirm the existence of the canted, AF state as was predicted
by de Gennes [P.-G. de Gennes, Phys. Rev. 118, 141 (1960)], but had remained
elusive
Market familiarity and the location of South and North MNEs
We use a systematic empirical analysis of the determinants of South-South (SS) and North-South (NS) foreign direct investment (FDI) as a canvas to explore how multinational enterprises’ (MNEs) location decisions are shaped by better acquaintance with a foreign market resulting from bilateral ties, experience of international expansion, and knowledge of how to deal with poor governance. We find that these various aspects of market familiarity, which can interact together, are important to explain and differentiate the location behaviors of South MNEs (S-MNEs) and North MNEs (N-MNEs) in developing countries
Long-term effects of chronic light pollution on seasonal functions of European blackbirds (turdus merula)
Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems
A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems
In this paper we present a methodological framework that meets novel
requirements emerging from upcoming types of accelerated and highly
configurable neuromorphic hardware systems. We describe in detail a device with
45 million programmable and dynamic synapses that is currently under
development, and we sketch the conceptual challenges that arise from taking
this platform into operation. More specifically, we aim at the establishment of
this neuromorphic system as a flexible and neuroscientifically valuable
modeling tool that can be used by non-hardware-experts. We consider various
functional aspects to be crucial for this purpose, and we introduce a
consistent workflow with detailed descriptions of all involved modules that
implement the suggested steps: The integration of the hardware interface into
the simulator-independent model description language PyNN; a fully automated
translation between the PyNN domain and appropriate hardware configurations; an
executable specification of the future neuromorphic system that can be
seamlessly integrated into this biology-to-hardware mapping process as a test
bench for all software layers and possible hardware design modifications; an
evaluation scheme that deploys models from a dedicated benchmark library,
compares the results generated by virtual or prototype hardware devices with
reference software simulations and analyzes the differences. The integration of
these components into one hardware-software workflow provides an ecosystem for
ongoing preparative studies that support the hardware design process and
represents the basis for the maturity of the model-to-hardware mapping
software. The functionality and flexibility of the latter is proven with a
variety of experimental results
Suppression of HBV by Tenofovir in HBV/HIV coinfected patients : a systematic review and meta-analysis
Background: Hepatitis B coinfection is common in HIV-positive individuals and as antiretroviral therapy has made death due to AIDS less common, hepatitis has become increasingly important. Several drugs are available to treat hepatitis B. The most potent and the one with the lowest risk of resistance appears to be tenofovir (TDF). However there are several questions that remain unanswered regarding the use of TDF, including the proportion of patients that achieves suppression of HBV viral load and over what time, whether suppression is durable and whether prior treatment with other HBV-active drugs such as lamivudine, compromises the efficacy of TDF due to possible selection of resistant HBV strains.
Methods: A systematic review and meta-analysis following PRISMA guidelines and using multilevel mixed effects logistic regression, stratified by prior and/or concomitant use of lamivudine and/or emtricitabine.
Results: Data was available from 23 studies including 550 HBV/HIV coinfected patients treated with TDF. Follow up was for up to seven years but to ensure sufficient power the data analyses were limited to three years. The overall proportion achieving suppression of HBV replication was 57.4%, 79.0% and 85.6% at one, two and three years, respectively. No effect of prior or concomitant 3TC/FTC was shown. Virological rebound on TDF treatment was rare.
Interpretation: TDF suppresses HBV to undetectable levels in the majority of HBV/HIV coinfected patients with the proportion fully suppressed continuing to increase during continuous treatment. Prior treatment with 3TC/FTC does not compromise efficacy of TDF treatment. The use of combination treatment with 3TC/FTC offers no significant benefit over TDF alone
- …