7,999 research outputs found
On the nature of Lithium-rich giant stars: constraints from Beryllium abundances
We have derived beryllium abundances for 7 Li-rich giant (A(Li) > 1.5) stars
and 10 other Li-normal giants, with the aim of investigating the origin of the
Lithium in the Li-rich giants. In particular, we test the predictions of the
engulfment scenario proposed by Siess & Livio (1999), where the engulfment of a
brown dwarf or one or more giant planets would lead to a simultaneous
enrichment of 7Li and 9Be. We show that regardless their nature, none of the
stars studied in this paper were found to have detectable beryllium. Using
simple dilution arguments we show that the engulfment of an external object as
the sole source of Li enrichment is ruled out by the Li and Be abundance data.
The present results favor the idea that Li has been produced in the interior of
the stars by a Cameron-Fowler process and brought up to the surface by an extra
mixing mechanism.Comment: Accepted in A&
ANALYTICAL SOLUTION OF A 2D TRANSIENT HEAT CONDUCTION PROBLEM USING GREEN´S FUNCTIONS
Through the present work the authors determined the analytical solution of a transient two-dimensional heat conduction problem using Green’s Functions (GF). This method is very useful for solving cases where heat conduction is transient and whose boundary conditions vary with time. Boundary conditions of the problem in question, with rectangular geometry, are of the prescribed temperature type - prescribed flow in the direction x and prescribed flow - prescribed flow in the direction y, implying in the corresponding GF given by GX21Y22. The initial temperature of the space domain is assumed to be different from the prescribed temperature occurring at one of the boundaries along x. The temperature field solution of the two-dimensional problem was determined. The intrinsic verification of this solution was made by comparing the solution of a 1D problem. This was to consider the incident heat fluxes at y = 0 and y = 2b tending to zero, thus making the problem one-dimensional, with corresponding GF given by GX21. When comparing the results obtained in both cases, for a time of t = 1 s, it was seen that the temperature field of both was very similar, which validates the solution obtained for the 2D problem
Statistics of Stellar Populations of Star Clusters and Surrounding Fields in the Outer Disk of the Large Magellanic Cloud
A comparative analysis of Washington color-magnitude diagrams (CMDs) for 14
star clusters and respective surrounding fields in the Large Magellanic Cloud
(LMC) outer disk is presented. Each CCD frame including field and respective
cluster covers an area of 185 arcmin^2. The stellar population sampled is of
intermediate age and metallicity. CMD radial analysis involving star count
ratios, morphology and integrated light properties are carried out. Luminosity
functions (LFs) are also presented. Two main results are: (i) Within the range
4<R(kpc)<8, the distance from the LMC center is well correlated with the
average age in the sense that inner fields are younger and; (ii) Beyond
approximately 8kpc the outer fields do not show evidence of a significant
intermediate-age component in their stellar populations, as inferred from red
giant clump star counts.Comment: 27 pages, 4 tables, 11 figures; accepted by the A
Integrated Near-Infrared Colors of Star Clusters: Analysis of the Stochastic Effects on the IMF
We examine the influence of stochastic effects on the integrated
near-infrared light of star clusters with ages between 7.5<log(t)<9.25. To do
this, we use stellar evolution models and a Monte Carlo technique to simulate
the effects of stochastic variations in the numbers of main sequence, giant,
and supergiant stars for single-generation stellar populations. The
fluctuations in the integrated light produced by such variations are evaluated
for the VJHK bands. We show that the light of the star clusters can be
strongly affected by plausible stochastic fluctuations in the numbers of bright
but scarce stars. In particular, the inclusion of thermally pulsing AGB stars
in the stellar evolution models yields integrated colors with values in
agreement with the spread seen for Large Magellanic Cloud clusters that are
known to have significant number of AGB stars. Implications of this analysis
are important for studies of the integrated light of stellar populations where
it is not possible to resolve individual stars.Comment: 23 pages, AASTeX, 7 postscript figures, submitted to ApJ, revised
versio
Accelerating Cold Dark Matter Cosmology ()
A new kind of accelerating flat model with no dark energy that is fully
dominated by cold dark matter (CDM) is investigated. The number of CDM
particles is not conserved and the present accelerating stage is a consequence
of the negative pressure describing the irreversible process of gravitational
particle creation. A related work involving accelerating CDM cosmology has been
discussed before the SNe observations [Lima, Abramo & Germano, Phys. Rev. D53,
4287 (1996)]. However, in order to have a transition from a decelerating to an
accelerating regime at low redshifts, the matter creation rate proposed here
includes a constant term of the order of the Hubble parameter. In this case,
does not need to be small in order to solve the age problem and the
transition happens even if the matter creation is negligible during the
radiation and part of the matter dominated phase. Therefore, instead of the
vacuum dominance at redshifts of the order of a few, the present accelerating
stage in this sort of Einstein-de Sitter CDM cosmology is a consequence of the
gravitational particle creation process. As an extra bonus, in the present
scenario does not exist the coincidence problem that plagues models with
dominance of dark energy. The model is able to harmonize a CDM picture with the
present age of the universe, the latest measurements of the Hubble parameter
and the Supernovae observations.Comment: 9 pages, 6 figures, typos corrected, references added, discussion in
Appendix B extende
- …