1,835 research outputs found

    Fronts dynamics in the presence of spatio-temporal structured noises

    Get PDF
    Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatio-temporal structured noises. An effective deterministic model is analytical derived where the noise parameters, intensity, correlation time and correlation length appear explicitely. The different effects of these parameters are discussed for the Ginzburg-Landau and Schl\"ogl models. We obtain an analytical expression for the front velocity as a function of the noise parameters. Numerical simulations results are in a good agreement with the theoretical predictions.Comment: 11 pages, 6 figures; REVTEX; to be published in Phys.Rev.E, july 200

    Pulsed Magnetic Field Measurements of the Composite Fermion Effective Mass

    Full text link
    Magnetotransport measurements of Composite Fermions (CF) are reported in 50 T pulsed magnetic fields. The CF effective mass is found to increase approximately linearly with the effective field BB^*, in agreement with our earlier work at lower fields. For a BB^* of 14 T it reaches 1.6me1.6m_e, over 20 times the band edge electron mass. Data from all fractions are unified by the single parameter BB^* for all the samples studied over a wide range of electron densities. The energy gap is found to increase like B\sqrt{B^*} at high fields.Comment: Has final table, will LaTeX without error

    Wigner Crystallization in a Quasi-3D Electronic System

    Full text link
    When a strong magnetic field is applied perpendicularly (along z) to a sheet confining electrons to two dimensions (x-y), highly correlated states emerge as a result of the interplay between electron-electron interactions, confinement and disorder. These so-called fractional quantum Hall (FQH) liquids form a series of states which ultimately give way to a periodic electron solid that crystallizes at high magnetic fields. This quantum phase of electrons has been identified previously as a disorder-pinned two-dimensional Wigner crystal with broken translational symmetry in the x-y plane. Here, we report our discovery of a new insulating quantum phase of electrons when a very high magnetic field, up to 45T, is applied in a geometry parallel (y-direction) to the two-dimensional electron sheet. Our data point towards this new quantum phase being an electron solid in a "quasi-3D" configuration induced by orbital coupling with the parallel field

    Swiss Adult Congenital HEart disease Registry (SACHER) - rationale, design and first results.

    Get PDF
    In 2013, a prospective registry for adults with congenital heart disease (CHD) was established in Switzerland, providing detailed data on disease characteristics and outcomes: Swiss Adult Congenital HEart disease Registry (SACHER). Its aim is to improve the knowledge base of outcomes in adults with CHD. The registry design and baseline patient characteristics are reported. All patients with structural congenital heart defects or hereditary aortopathies, followed-up at dedicated adult CHD clinics, are asked to participate in SACHER. Data of participants are pseudonymised and collected in an electronic, web-based, database (secuTrial®). Collected data include detailed diagnosis, type of repair procedures, previous complications and adverse outcomes during follow-up. From May 2014 to December 2016, 2836 patients (54% male, mean age 34 ± 14 years), with a wide variety of congenital heart lesions, have been enrolled into SACHER. Most prevalent were valve lesions (25%), followed by shunt lesions (22%), cyanotic and other complex congenital heart disease (16%), diseases affecting the right heart, i.e., tetralogy of Fallot or Ebstein anomaly (15%), and diseases of the left ventricular outflow tract (13%); 337 patients (12%) had concomitant congenital syndromes. The majority had undergone previous repair procedures (71%), 47% of those had one or more reinterventions. SACHER collects multicentre data on adults with CHD. Its structure enables prospective data analysis to assess detailed, lesion-specific outcomes with the aim to finally improve long-term outcomes

    The distribution of work performed on a NIS junction

    Get PDF
    We propose an experimental setup to measure the work performed in a normal-metal/insulator/ superconducting (NIS) junction, subjected to a voltage change and in contact with a thermal bath. We compute the performed work and argue that the associated heat release can be measured experimentally. Our results are based on an equivalence between the dynamics of the NIS junction and that of an assembly of two-level systems subjected to a circularly polarised field, for which we can determine the work-characteristic function exactly. The average work dissipated by the NIS junction, as well as its fluctuations, are determined. From the work characteristic function, we also compute the work probability-distribution and show that it does not have a Gaussian character. Our results allow for a direct experimental test of the Crooks–Tasaki fluctuation relation.Program of Recruitment of Post Doctoral Researchers for the Portuguese Scientific and Technological System, within the Operational Program Human Potential (POPH) of the QREN, participated by the European Social Fund (ESF) and national funds of the Portuguese Ministry of Education and Science (MEC); Danish National Research Foundation, Project No. DNRF58; National Natural Science Foundation of China, Grant No. 1147425

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 6060^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter

    Get PDF
    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft (RPA) carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is unchanged with respect to v2. 39 pages, 15 figures, 2 table
    corecore