8 research outputs found

    Characterization of a highly efficient N-doped TiO 2 photocatalyst prepared via factorial design

    Get PDF
    The preparation of titanium dioxide nanoparticles doped with nitrogen for application as a photocatalyst in the decomposition of azo dyes was optimized by factorial planning. Five variables were evaluated and the results showed that the stirring method of the reaction medium, the nitrogen source and the calcination temperature are the determining parameters that affect the photocatalytic activity. With this methodology, it was possible to obtain an optimized photocatalyst (K1) with high surface area and high mineralization efficiency (100%) of the dye Ponceau 4R under solar irradiation. K1, its non-doped version and the worst photocatalyst obtained by the factorial planning (K2) were characterized by several techniques to rationalize the different behaviors. The observed mineralization rate constants under artificial UV-A radiation were in the order of 10−2, 10−4 and 10−3 min−1, respectively, for K1, K2 and the non-doped oxide. As shown by N2 sorption isotherms, the powders exhibited large variations in porosity as well as in the specific surface area, with values ranging from 63.03 m2 g−1 for K1 to 12.82 m2 g−1 for K2. Infrared spectra showed that the calcination of the doped oxides between 300 and 500 °C leads to considerable loss of the nitrogen content, which is corroborated by XPS measurements that also indicate the presence of oxygen vacancies on their surfaces. Nanosecond transient absorption measurements show that the electron–hole half-lifetime in K1 is 870 ns, ca. two times longer than that observed for the other photocatalysts. Additionally, dye degradation studies under solar radiation reveal that K1 is ca. 28% faster than the non-doped TiO2 under similar conditions. This higher photoactivity for K1 is attributed to its extended visible light absorption and the optimized morphological and electronic properties.DFG/BA 1137/8-

    Charge carrier dynamics and photocatalytic behavior of TiO2 nanopowders submitted to hydrothermal or conventional heat treatment

    Get PDF
    The sol–gel technique followed by conventional (TiO2-1) and hydrothermal (TiO2-2) thermal treatment was employed to prepare TiO2-based photocatalysts with distinct particle sizes and crystalline structures. The as prepared metal oxides were evaluated as photocatalysts for gaseous HCHO degradation, methanol, and dye oxidation reactions. Additionally, metallic platinum was deposited on the TiO2 surfaces and H2 evolution measurements were performed. The photocatalytic activities were rationalized in terms of morphologic parameters along with the electron/hole dynamics obtained from transient absorption spectroscopy (TAS). TiO2-2 exhibits smaller particle size, poorer crystallinity, and higher surface area than TiO2-1. Moreover the hydrothermal treatment leads to formation of the metastable brookite phase, while TiO2-1 exhibits only the anatase phase. TAS measurements show that the electron/hole recombination of TiO2-2 is faster than that of the latter. Despite that, TiO2-2 exhibits higher photonic efficiencies for photocatalytic oxidation reactions, which is attributed to its larger surface area that compensates for the decrease of the surface charge carrier concentration. For H2 evolution, it was found that the surface area has only a minor effect and the photocatalyst performance is controlled by the efficiency of the electron transfer to the platinum islands. This process is facilitated by the higher crystallinity of TiO2-1, which exhibits higher photonic efficiency for H2 evolution than that observed for TiO2-2. The results found here provide new insights into the correlations between thermal treatment conditions and photocatalytic activity and will be useful for the design of high performance photocatalysts.Fundac˜ao de Amparo `a Pesquisa do Estado de Minas GeraisConselho Nacional de Desenvolvimento Cientif´ıco e Tecnolog´ıcoCoordenac˜ao de Aperfeiçoamento de Pessoal de N´ıvel SuperiorDFG/BA 1137/8-

    Dye Degradation Enhanced by Coupling Electrochemical Process and Heterogeneous Photocatalysis

    No full text
    In this study, we evaluated the combination between an electrochemical process, occurring in the dark, and a heterogeneous photocatalytic process for dye degradation, using the azo dye tartrazine as model of oxidizable substrate. TiO2 P25 and an Ag-doped TiO2 were used as photocatalysts in suspensions containing 50 mg L–1 of tartrazine. The best result, 74% of dye mineralization in 120 min of reaction, was obtained using TiO2 P25 as photocatalyst and a current density of 10 mA cm–2 in the electrochemical cell, a value 30% higher than the sum of the results obtained by heterogeneous photocatalysis (44%) and electrochemical oxidation (13%). The use of Ag-doped TiO2 did not result in significant improvement on tartrazine mineralization, due to the aggregation of these nanoparticles. Our results suggest that this process can be an alternative for a complete treatment (discoloration and mineralization) of tartrazine and most likely other azo dyes

    Rapid Preparation of (BiO) 2

    No full text
    Crystalline (BiO)(2)CO3 nanosheets were synthesized by a rapid one-step reaction via microwave-assisted hydrothermal method using urea as a morphology mediator and carbon source. The hydrothermal method combined with microwave heating allowed to obtain sheet-like (BiO)(2)CO3 particles at shorter reaction times when compared to the conventional heating hydrothermal method. The photocatalytic activity of the as prepared samples was evaluated towards degradation of Ponceau 4R (C.I. 16255) under artificial UV-Vis light irradiation. The results show that good photocatalytic efficiency can be obtained for powders prepared with reaction times as low as 2 minutes

    Efficient Mineralization of Paracetamol Using the Nanocomposite TiO 2

    No full text
    The photocatalytic performance of a composite based on the association of TiO2 and 2.5 wt.% of zinc(II) phthalocyanine (TiO2/ZnPc) was evaluated towards the mineralization of paracetamol and compared to that observed for the bare oxide in different pH and H2O2 concentrations. The results show that the photocatalytic performances were influenced by the pH, with maximum efficiency around the isoelectric point. Mineralization efficiencies between 86-91% was obtained using TiO2/ZnPc in pH 5.5-6.8, with 33 mg L-1 of H2O2, ca. 15% higher than that observed with TiO2. The mineralization efficiencies using bare TiO2 and TiO2/ZnPc were respectively 112 and 18% lower in the absence of H2O2. The better performance of TiO2/ZnPc is related to its extended light absorption and non-uniform coating of the TiO2 surface by ZnPc aggregates. Above pH 6.8, the mineralization efficiencies decrease for both photocatalysts, although the consumption of H2O2 remains above 90%, due to its decomposition in alkaline pH

    Luminescence enhancement of the Tb(III) ion with the thenoyltrifluoroacetonate ligand acting as an efficient sensitizer

    No full text
    The synthesis, structural investigation, and photophysical properties of the complex [Tb(TTA)(2)(NO3) (TPPO)(2)] are reported. Unlike the analog tris-diketonate complex [Tb(TTA)(3)(TPPO)(2)], the new complex presents abnormally high luminescence intensity centered on the terbium ion. Our results clearly suggest a higher energy transfer efficiency from the TEA antenna ligand to the Tb(III) ion in the bis-diketonate complex compared with that in the tris-diketonate complex. A mechanism involving the increasing of triplet state energy when one TTA ligand is replaced by the NO3- group in the first coordination sphere is suggested and experimentally investigated to explain the anomalous luminescence properties of the new complex [Tb(TTA)(2)(NO3)(TPPO)(2)]
    corecore