Supplementary Information

Charge carrier dynamics and photocatalytic behavior of TiO₂ nanopowders submitted to hydrothermal or conventional heat

treatment

A. O. T. Patrocinio^{*}, J. Schneider[‡], M. D. França[§], L. M. Santos[§], B. P. Caixeta[§], A. E. H. Machado[§] and D. W. Bahnemann^{‡,†}

[§] Laboratory of Photochemistry and Material Science; Institute of Chemistry, Universidade Federal de Uberlandia, Uberlandia, 38400-902, Brazil

[‡]Institut für Technische Chemie, Leibniz Universität Hannover, Callinstrasse 3, D-30167, Hannover, Germany

[†] Laboratory for Nanocomposite Materials, Department of Photonics, Faculty of Physics, Saint-Petersburg State University, Ulianovskaia str. 3, Peterhof, Saint-Petersburg, 198504, Russia

1. Rietveld analysis of XRD diffraction patterns

Rietveld analyses of the XRD patterns were caried out using the FullProf software (ILL). Fittings were adjusted using the Thompson-Cox-Hastings pseudo-Voigt and Axial divergence asymmetry function. The results are shown in Figures S1, S2 and S3, respectively for TiO₂-1, TiO₂-2 and TiO₂-P25 catalysts. The main fitting parameters are shown in Table S1.

Figure S1. Rietveld analysis of XRD patterns of TiO₂-1 catalyst.

Figure S2. Rietveld analysis of XRD patterns of TiO₂-2 catalyst.

Figure S3. Rietveld analysis of XRD patterns of TiO₂-P25 catalyst.

Table S1. Fitting Parameters for Rietveld Analyses of the respective TiO ₂ XRD patterns
along with their standard deviations. The letters A, B and R refer respectively to
Anatase, Brookite and Rutile.

Parameter	TiO ₂ -1	TiO ₂ -2	TiO ₂ -P25
R _p	7.11	8.48	6.14
R _{wp}	10.40	10.90	8.91
R _{exp}	7.08	7.12	6.67
S*	1.46	1.53	1.33
χ^2	3.39	2.34	2.57
Volume	135.929	135.745 / 259.102	136.105 / 62.376
Phase composition (%)	100.00 (A)	55.37 (A)	83.42 (A)
		44.63 (B)	16.58 (R)
R _b	2.09	1.15 / 2.59	1.97 / 2.95
R _f	1.70	1.08 / 1.18	1.73 / 3.01
Crystallite size (nm)	26.243 (0.989)	15.001 (2.023) (A)	35.517 (2.054) (A)
		4.016 (1.027) (B)	45.984 (6.727) (R)
Strain (%)	23.1098 (4.0873)	126.443 (2.208) (A)	21.562 (0.014) (A)
		251.982 (21.509) (B)	15.418 (0.004) (R)
Lattice parameters for			
the Anatase phase			
a (3.782)**	3.7829	3.7878	3.7843
b (3.782)**	3.7829	3.7878	3.7843
c (9.502)**	9.4989	9.4615	9.5038
R_{wp}			

$$\Lambda_{W_1}$$

* S = $\overline{R_{exp}}$; ** Standard values (U. Diebold, *Surf. Sci. Rep.* **48** (2003) 53-229).

2. UV-Vis spectroscopy

Figure S4. UV-Vis reflectance spectra of the TiO₂ samples prepared.

4. N_2 adsorption/desorption isotherms

Figure S5. N_2 adsorption/desorption isotherms of TiO₂-1 (a) and TiO₂-2 (b).

3. Dye degradation measurements

Figure S6. Time profile curves for mineralization of Pounceau 4R solutions under UVA irradiation in the presence of different TiO₂ catalysts.

3. Time- resolved absorption data.

Figure S7. Normalized time-resolved absorption spectra at different time slices for the bare catalysts; (a) TiO₂-1 and (b) TiO₂-2

re S8. Normalized time-resolved absorption spectra at different time slices for the catalysts having 0.5% wt. platinum; (a) TiO₂-1-Pt and (b) TiO₂-2-Pt