106 research outputs found

    Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis

    Get PDF
    In order to better understand the pathogenesis of Parkinson's Disease (PD) it is important to consider possible contributory factors inherent to the aging process, as age-related changes in a number of physiological systems (perhaps incurred within particular environments) appear to influence the onset and progression of neurodegenerative disorders. Accordingly, we posit that a principal mechanism underlying PD is inflammaging, i.e. the chronic inflammatory process characterized by an imbalance of pro- and anti-inflammatory mechanisms which has been recognized as operative in several age-related, and notably neurodegenerative diseases. Recent conceptualization suggests that inflammaging is part of the complex adaptive mechanisms (\ue2\u80\u9cre-modeling\ue2\u80\u9d) that are ongoing through the lifespan, and which function to prevent or mitigate endogenous processes of tissue disruption and degenerative change(s). The absence of an adequate anti-inflammatory response can fuel inflammaging, which propagates on both local (i.e.- from cell to cell) and systemic levels (e.g.- via exosomes and other molecules present in the blood). In general, this scenario is compatible with the hypothesis that inflammaging represents a hormetic or hormetic-like effect, in which low levels of inflammatory stress may prompt induction of anti-inflammatory mediators and mechanisms, while sustained pro-inflammatory stress incurs higher and more durable levels of inflammatory substances, which, in turn prompt a local-to-systemic effect and more diverse inflammatory response(s). Given this perspective, new treatments of PD may be envisioned that strategically are aimed at exerting hormetic effects to sustain anti-inflammatory responses, inclusive perhaps, of modulating the inflammatory influence of the gut microbiota

    Phenotypic antimicrobial resistance profile of isolates causing clinical mastitis in dairy animals

    Get PDF
    Mastitis is the most frequent and costly disease of lactating animals and is associated with a significant reduction in milk yield, increased cost and culling. Early and specific antibiotic based treatment reduces the severity of the disease. Over the years the extensive use of antimicrobials has led to increase antimicrobial resistance. The present study was designed to investigate the prevalence of microorganisms responsible for mastitis and their antimicrobial resistance pattern. A total of 282 milk samples were collected from different animal species (sheep, cows and goats) with clinical mastitis. Antimicrobial resistance was evaluated for Streptococcus spp. and Staphylococcus spp. In cow samples Streptococcus spp. represented the most frequently isolated genus (33.84%), while Staphylococcus spp. was the most prevalent genus in sheep and goat samples (44.4 and 73.86%, respectively). Gentamicin and chloramphenicol were found to be the most effective drugs against the tested isolates, while the highest resistance rates were observed for amoxicillin, ampicillin, tetracycline, trimethoprim-sulfamethoxazole

    Auditory cortex hypoperfusion: a metabolic hallmark in Beta Thalassemia

    Get PDF
    Abstract Background Sensorineural hearing loss in beta-thalassemia is common and it is generally associated with iron chelation therapy. However, data are scarce, especially on adult populations, and a possible involvement of the central auditory areas has not been investigated yet. We performed a multicenter cross-sectional audiological and single-center 3Tesla brain perfusion MRI study enrolling 77 transfusion-dependent/non transfusion-dependent adult patients and 56 healthy controls. Pure tone audiometry, demographics, clinical/laboratory and cognitive functioning data were recorded. Results Half of patients (52%) presented with high-frequency hearing deficit, with overt hypoacusia (Pure Tone Average (PTA) > 25 dB) in 35%, irrespective of iron chelation or clinical phenotype. Bilateral voxel clusters of significant relative hypoperfusion were found in the auditory cortex of beta-thalassemia patients, regardless of clinical phenotype. In controls and transfusion-dependent (but not in non-transfusion-dependent) patients, the relative auditory cortex perfusion values increased linearly with age (p < 0.04). Relative auditory cortex perfusion values showed a significant U-shaped correlation with PTA values among hearing loss patients, and a linear correlation with the full scale intelligence quotient (right side p = 0.01, left side p = 0.02) with its domain related to communication skills (right side p = 0.04, left side p = 0.07) in controls but not in beta-thalassemia patients. Audiometric test results did not correlate to cognitive test scores in any subgroup. Conclusions In conclusion, primary auditory cortex perfusion changes are a metabolic hallmark of adult beta-thalassemia, thus suggesting complex remodeling of the hearing function, that occurs regardless of chelation therapy and before clinically manifest hearing loss. The cognitive impact of perfusion changes is intriguing but requires further investigations

    An Italian Multicenter Perspective Harmonization Trial for the Assessment of MET Exon 14 Skipping Mutations in Standard Reference Samples

    Get PDF
    Lung cancer remains the leading cause of cancer deaths worldwide. International societies have promoted the molecular analysis of MET proto-oncogene, receptor tyrosine kinase (MET) exon 14 skipping for the clinical stratification of non-small cell lung cancer (NSCLC) patients. Different technical approaches are available to detect MET exon 14 skipping in routine practice. Here, the technical performance and reproducibility of testing strategies for MET exon 14 skipping carried out in various centers were evaluated. In this retrospective study, each institution received a set (n = 10) of a customized artificial formalin-fixed paraffin-embedded (FFPE) cell line (Custom METex14 skipping FFPE block) that harbored the MET exon 14 skipping mutation (Seracare Life Sciences, Milford, MA, USA), which was previously validated by the Predictive Molecular Pathology Laboratory at the University of Naples Federico II. Each participating institution managed the reference slides according to their internal routine workflow. MET exon 14 skipping was successfully detected by all participating institutions. Molecular analysis highlighted a median Cq cut off of 29.3 (ranging from 27.1 to 30.7) and 2514 (ranging from 160 to 7526) read counts for real-time polymerase chain reaction (RT-PCR) and NGS-based analyses, respectively. Artificial reference slides were a valid tool to harmonize technical workflows in the evaluation of MET exon 14 skipping molecular alterations in routine practice

    Know Your Current Ih: Interaction with a Shunting Current Explains the Puzzling Effects of Its Pharmacological or Pathological Modulations

    Get PDF
    The non-specific, hyperpolarization activated, Ih current is particularly involved in epilepsy and it exhibits an excitatory or inhibitory action on synaptic integration in an apparently inconsistent way. It has been suggested that most of the inconsistencies could be reconciled invoking an indirect interaction with the M-type K+ current, another current involved in epilepsy. However, here we show that the original experiments, and the simplified model used to explain and support them, cannot explain in a conclusive way the puzzling Ih actions observed in different experimental preparations. Using a realistic model, we show instead how and why a shunting current, such as that carried by TASK-like channels, and dependent on Ih channel is able to explain virtually all experimental findings on Ih up- or down-regulation by modulators or pathological conditions. The model results suggest several experimentally testable predictions to characterize in more details this elusive and peculiar interaction, which may be of fundamental importance in the development of new treatments for all those pathological and cognitive dysfunctions caused, mediated, or affected by Ih

    IFN-λ3, not IFN-λ4, likely mediates IFNL3–IFNL4 haplotype–dependent hepatic inflammation and fibrosis

    Get PDF
    The International Liver Disease Genetics Consortium (ILDGC).Genetic variation in the IFNL3–IFNL4 (interferon-λ3–interferon-λ4) region is associated with hepatic inflammation and fibrosis1,2,3,4. Whether IFN-λ3 or IFN-λ4 protein drives this association is not known. We demonstrate that hepatic inflammation, fibrosis stage, fibrosis progression rate, hepatic infiltration of immune cells, IFN-λ3 expression, and serum sCD163 levels (a marker of activated macrophages) are greater in individuals with the IFNL3–IFNL4 risk haplotype that does not produce IFN-λ4, but produces IFN-λ3. No difference in these features was observed according to genotype at rs117648444, which encodes a substitution at position 70 of the IFN-λ4 protein and reduces IFN-λ4 activity, or between patients encoding functionally defective IFN-λ4 (IFN-λ4–Ser70) and those encoding fully active IFN-λ4–Pro70. The two proposed functional variants (rs368234815 and rs4803217)5,6 were not superior to the discovery SNP rs12979860 with respect to liver inflammation or fibrosis phenotype. IFN-λ3 rather than IFN-λ4 likely mediates IFNL3–IFNL4 haplotype–dependent hepatic inflammation and fibrosis.M.E., M.D., and J.G. are supported by the Robert W. Storr Bequest to the Sydney Medical Foundation, University of Sydney, and by a National Health and Medical Research Council of Australia (NHMRC) Program Grant (1053206) and NHMRC Project Grants (APP1107178 and APP1108422). G.D. is supported by an NHMRC Fellowship (1028432)

    Congenital myopathies: Clinical phenotypes and new diagnostic tools

    Get PDF
    Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis
    • 

    corecore