331 research outputs found

    A novel missense mutation in the C-terminal domain of lipoprotein lipase (Glu410-->Val) leads to enzyme inactivation and familial chylomicronemia.

    Get PDF

    Analysis of Protein Structure-Function in Vivo: ADENOVIRUS-MEDIATED TRANSFER OF LIPASE LID MUTANTS IN HEPATIC LIPASE-DEFICIENT MICE

    Get PDF
    Hepatic lipase (HL) and lipoprotein lipase (LPL) are key enzymes involved in the hydrolysis of triglycerides and phospholipids present in circulating plasma lipoproteins. Despite their similarities, the role that each of these two lipases play in the metabolism of triglyceride-rich lipoproteins and high density lipoproteins is distinct. In order to identify structural domains that may confer the different substrate specificities between HL and LPL, we have utilized a novel approach for performing structure-function analysis of a protein, in vivo, by using recombinant adenovirus vectors to express native and mutant enzymes in an animal model for a human genetic deficiency. HL-deficient mice (n = 19) characterized by increased plasma cholesterol and phospholipid concentrations were injected with adenovirus expressing luciferase (rLucif-AdV), native hepatic (rHL-AdV), and lipoprotein lipase (rLPL-AdV) or lipase mutants in which the lid covering the catalytic site of either enzyme was exchanged (rHL+LPL lid-AdV and rLPL+HL lid-AdV). Mice injected with rLucif-AdV had no changes in post-heparin HL and LPL activities (217 +/- 29 and 7 +/- 2 nmol/min/ml, respectively) as well as plasma lipids. Despite expression of similar levels of post-heparin plasma lipase activity on day 5 post-adenovirus infusion (9806 +/- 915 and 9677 +/- 2033 nmol/min/ml, respectively) mice injected with rHL-AdV or rHL+LPL lid-AdV demonstrated marked differences in the reduction of plasma phospholipids (70% and 32%, respectively, p < 0.005). Similarly, despite post-heparin plasma lipolytic activities of 4495 +/- 534 and 4844 +/- 1336 nmol/min/ml, injection of rLPL-AdV or rLPL+HL lid-AdV resulted in phospholipid reductions of 31% and 81% (p < 0.005). Exchange of the lipase lid did not significantly alter plasma triglyceride concentrations. Thus, preferential in vivo hydrolysis of phospholipids was demonstrated in animals expressing lipases containing the HL lid but not the LPL lid. These studies identify the lipase lid as a major structural motif responsible for conferring the different in vivo phospholipase activities between HL and LPL, a function which may modulate the distinct physiological roles of these two similar lipolytic enzymes in lipoprotein metabolism. The use of recombinant adenovirus to express mutant proteins in animal models for human genetic deficiencies represents a powerful, new approach for performing structure-function analysis of proteins in vivo

    Hepatic lipase gene therapy in hepatic lipase-deficient mice. Adenovirus-mediated replacement of a lipolytic enzyme to the vascular endothelium.

    Get PDF
    Hepatic lipase (HL) is an endothelial-bound lipolytic enzyme which functions as a phospholipase as well as a triacylglycerol hydrolase and is necessary for the metabolism of IDL and HDL. To evaluate the feasibility of replacing an enzyme whose in vivo physiologic function depends on its localization on the vascular endothelium, we have infused recombinant replication-deficient adenovirus vectors expressing either human HL (HL-rAdV; n = 7) or luciferase cDNA (Lucif-rAdV; n = 4) into HL-deficient mice with pretreatment plasma cholesterol, phospholipid, and HDL cholesterol values of 176 +/- 9, 314 +/- 12, and 129 +/- 9, respectively. After infusion of HL-rAdV, HL could be detected in the postheparin plasma of HL-deficient mice by immunoblotting and postheparin plasma HL activities were 25,700 +/- 4,810 and 1,510 +/- 688 nmol/min/ml on days 5 and 15, respectively. Unlike the mouse HL, 97% of the newly synthesized human HL was heparin releasable, indicating that the human enzyme was virtually totally bound to the mouse vascular endothelium. Infusion of HL-rAdV in HL-deficient mice was associated with a 50-80% decrease in total cholesterol, triglyceride, phospholipids, cholesteryl ester, and HDL cholesterol (P < 0.001) as well as normalization of the plasma fast protein liquid chromatography lipoprotein profile by day 8. These studies demonstrate successful expression and delivery of a lipolytic enzyme to the vascular endothelium for ultimate correction of the HL gene defect in HL-deficient mice and indicate that recombinant adenovirus vectors may be useful in the replacement of endothelial-bound lipolytic enzymes in human lipolytic deficiency states

    VLDL Hydrolysis by Hepatic Lipase Regulates PPARδ Transcriptional Responses

    Get PDF
    PPARs (α,γ,δ) are a family of ligand-activated transcription factors that regulate energy balance, including lipid metabolism. Despite these critical functions, the integration between specific pathways of lipid metabolism and distinct PPAR responses remains obscure. Previous work has revealed that lipolytic pathways can activate PPARs. Whether hepatic lipase (HL), an enzyme that regulates VLDL and HDL catabolism, participates in PPAR responses is unknown.Using PPAR ligand binding domain transactivation assays, we found that HL interacted with triglyceride-rich VLDL (>HDL≫LDL, IDL) to activate PPARδ preferentially over PPARα or PPARγ, an effect dependent on HL catalytic activity. In cell free ligand displacement assays, VLDL hydrolysis by HL activated PPARδ in a VLDL-concentration dependent manner. Extended further, VLDL stimulation of HL-expressing HUVECs and FAO hepatoma cells increased mRNA expression of canonical PPARδ target genes, including adipocyte differentiation related protein (ADRP), angiopoietin like protein 4 and pyruvate dehydrogenase kinase-4. HL/VLDL regulated ADRP through a PPRE in the promoter region of this gene. In vivo, adenoviral-mediated hepatic HL expression in C57BL/6 mice increased hepatic ADRP mRNA levels by 30%. In ob/ob mice, a model with higher triglycerides than C57BL/6 mice, HL overexpression increased ADRP expression by 70%, demonstrating the importance of triglyceride substrate for HL-mediated PPARδ activation. Global metabolite profiling identified HL/VLDL released fatty acids including oleic acid and palmitoleic acid that were capable of recapitulating PPARδ activation and ADRP gene regulation in vitro.These data define a novel pathway involving HL hydrolysis of VLDL that activates PPARδ through generation of specific monounsaturated fatty acids. These data also demonstrate how integrating cell biology with metabolomic approaches provides insight into specific lipid mediators and pathways of lipid metabolism that regulate transcription

    Positive association of the hepatic lipase gene polymorphism c.514C > T with estrogen replacement therapy response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatic lipase (HL), an enzyme present in the hepatic sinusoids, is responsible for the lipolysis of lipoproteins. Human HL contains four polymorphic sites: G-250A, T-710C, A-763G, and C-514T single-nucleotide polymorphism (SNPs). The last polymorphism is the focus of the current study. The genotypes associated with the C-514T polymorphism are CC (normal homozygous - W), CT (heterozygous - H), and TT (minor-allele homozygous - M). HL activity is significantly impaired in individuals of the TT and CT genotypes. A total of 58 post-menopausal women were studied. The subjects were hysterectomized women receiving hormone replacement therapy consisting of 0.625 mg of conjugated equine estrogen once a day. The inclusion criteria were menopause of up to three years and normal blood tests, radiographs, cervical-vaginal cytology, and densitometry. DNA was extracted from the buccal and blood cells of all 58 patients using a commercially available kit (GFX<sup>® </sup>- Amersham-Pharmacia, USA).</p> <p>Results</p> <p>Statistically significant reductions in triglycerides (t = 2.16; n = 58; p = 0.03) but not in total cholesterol (t = 0.14; n = 58; p = 0.89) were found after treatment. This group of good responders were carriers of the T allele; the CT and TT genotypes were present significantly more frequently than in the group of non-responders (p = 0.02 or p = 0.07, respectively). However, no significant difference in HDL-C (t = 0.94; n = 58; p = 0.35) or LDL-C (t = -0.83; n = 58; p = 0.41) was found in these patients.</p> <p>Conclusions</p> <p>The variation in lipid profile associated with the C-514T polymorphism is significant, and the T allele is associated with the best response to ERT.</p

    Multiple splice defects in ABCA1 cause low HDL-C in a family with Hypoalphalipoproteinemia and premature coronary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations at splice junctions causing exon skipping are uncommon compared to exonic mutations, and two intronic mutations causing an aberrant phenotype have rarely been reported. Despite the high number of functional <it>ABCA1 </it>mutations reported to date, splice variants have been reported infrequently. We screened DNA from a 41 year-old male with low HDL-C (12 mg/dL [0.31 mmol/L]) and a family history of premature coronary heart disease (CHD) using polymerase chain reaction single-strand conformation polymorphism (SSCP) analysis.</p> <p>Methods</p> <p>Family members with low levels of HDL-C (n = 6) were screened by SSCP for mutations in <it>ABCA1</it>. Samples with altered SSCP patterns were sequenced directly using either an ABI 3700 or ABI3730Xl DNA Analyzer. To screen for splicing defects, cDNA was isolated from the proband's RNA and was sequenced as above. A series of minigenes were constructed to determine the contribution of normal and defective alleles.</p> <p>Results</p> <p>Two novel splice variants in <it>ABCA1 </it>were identified. The first mutation was a single base pair change (T->C) in IVS 7, 6 bps downstream from the exon7/intron7 junction. Amplification of cDNA and allelic subcloning identified skipping of Exon 7 that results in the elimination of 59 amino acids from the first extracellular loop of the ABCA1 protein. The second mutation was a single base pair change (G->C) at IVS 31 -1, at the intron/exon junction of exon 32. This mutation causes skipping of exon 32, resulting in 8 novel amino acids followed by a stop codon and a predicted protein size of 1496 AA, compared to normal (2261 AA). Bioinformatic studies predicted an impact on splicing as confirmed by <it>in vitro </it>assays of constitutive splicing.</p> <p>Conclusion</p> <p>In addition to carnitine-acylcarnitine translocase (CACT) deficiency and Hermansky-Pudlak syndrome type 3, this represents only the third reported case in which 2 different splice mutations has resulted in an aberrant clinical phenotype.</p

    Augmented Atherogenesis in LDL Receptor Deficient Mice Lacking Both Macrophage ABCA1 and ApoE

    Get PDF
    ABCA1 protects against atherosclerosis by facilitating cholesterol efflux from macrophage foam cells in the arterial wall to extracellular apolipoprotein (apo) A-I. In contrast to apoA-I, apoE is secreted by macrophages and can, like apoA-I, induce ABCA1-mediated cholesterol efflux. Yet, the combined effect of macrophage ABCA1 and apoE on lesion development is unexplored.LDL receptor knockout (KO) mice were transplanted with bone marrow from ABCA1/apoE double KO (dKO) mice, their respective single KO's, and wild-type (WT) controls and were challenged with a high-fat/high-cholesterol diet for 9 weeks. In vitro cholesterol efflux experiments showed no differences between ABCA1 KO and dKO macrophages. The serum non-HDL/HDL ratio in dKO transplanted mice was 1.7-fold and 2.4-fold (p<0.01) increased compared to WT and ABCA1 KO transplanted mice, respectively. The atherosclerotic lesion area in dKO transplanted animals (650±94×10(3) µm(2)), however, was 1.9-fold (p<0.01) and 1.6-fold (p<0.01) increased compared to single knockouts (ABCA1 KO: 341±20×10(3) µm(2); apoE KO: 402±78×10(3) µm(2), respectively) and 3.1-fold increased (p<0.001) compared to WT (211±20×10(3) µm(2)). When normalized for serum cholesterol exposure, macrophage ABCA1 and apoE independently protected against atherosclerotic lesion development (p<0.001). Moreover, hepatic expression levels of TNFα and IL-6 were highly induced in dKO transplanted animals (3.0-fold; p<0.05, and 4.3-fold; p<0.001, respectively). In agreement, serum IL-6 levels were also enhanced in ABCA1 KO transplanted mice (p<0.05) and even further enhanced in dKO transplanted animals (3.1-fold as compared to ABCA1 KO transplanted animals; p<0.05).Combined deletion of macrophage ABCA1 and apoE results in a defect in cholesterol efflux and, compared to ABCA1 KO transplanted mice, elevated serum total cholesterol levels. Importantly, these mice also suffer from enhanced systemic and hepatic inflammation, together resulting in the observed augmented atherosclerotic lesion development
    corecore