27 research outputs found
Discovery of Very High Energy gamma-rays from 1ES 1011+496 at z=0.212
We report on the discovery of Very High Energy (VHE) gamma-ray emission from
the BL Lacertae object 1ES1011+496. The observation was triggered by an optical
outburst in March 2007 and the source was observed with the MAGIC telescope
from March to May 2007. Observing for 18.7 hr we find an excess of 6.2 sigma
with an integrated flux above 200 GeV of (1.58 photons
cm s. The VHE gamma-ray flux is >40% higher than in March-April
2006 (reported elsewhere), indicating that the VHE emission state may be
related to the optical emission state. We have also determined the redshift of
1ES1011+496 based on an optical spectrum that reveals the absorption lines of
the host galaxy. The redshift of z=0.212 makes 1ES1011+496 the most distant
source observed to emit VHE gamma-rays up to date.Comment: 4 pages, 6 figures, minor changes to fit the ApJ versio
MAGIC observations of very high energy gamma-rays from HESS J1813-178
Recently, the HESS collaboration has reported the detection of gamma-ray
emission above a few hundred GeV from eight new sources located close to the
Galactic Plane. The source HESS J1813-178 has sparked particular interest, as
subsequent radio observations imply an association with SNR G12.82-0.02.
Triggered by the detection in VHE gamma-rays, a positionally coincident source
has also been found in INTEGRAL and ASCA data. In this Letter we present MAGIC
observations of HESS J1813-178, resulting in the detection of a differential
gamma-ray flux consistent with a hard-slope power law, described as dN/(dA dt
dE) = (3.3+/-0.5)*10^{-12} (E/TeV)^{-2.1+/-0.2} cm^(-2)s^(-1)TeV^(-1). We
briefly discuss the observational technique used, the procedure implemented for
the data analysis, and put this detection in the perspective of multifrequency
observations.Comment: Accepted by ApJ Letter
Discovery of Very High Energy -Rays from Markarian~180 Triggered by an Optical Outburst
The high-frequency-peaked BL Lacertae object Markarian~180 (Mrk~180) was
observed to have an optical outburst in 2006 March, triggering a Target of
Opportunity observation with the MAGIC telescope. The source was observed for
12.4 hr and very high energy -ray emission was detected with a
significance of 5.5 . An integral flux above 200 GeV of
was measured, corresponding to
11% of the Crab Nebula flux. A rather soft spectrum with a photon index of
has been determined. No significant flux variation was found.Comment: Accepted by ApJ Letters, minor revision
CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative
Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
MAGIC observations of the unidentified TeV gamma-ray source TeV J2032+4130
We observed the first known very high energy (VHE) gamma-ray emitting
unidentified source, TeV J2032+4130, for 94 hours with the MAGIC telescope. The
source was detected with a significance of 5.6 sigma. The flux, position, and
angular extension are compatible with the previous ones measured by the HEGRA
telescope system five years ago. The integral flux amounts to
(4.5+-0.3stat+-0.35sys)x10^{-13} ph cm s above 1 TeV. The source
energy spectrum, obtained with the lowest energy threshold to date, is
compatible with a single power law with a hard photon index of
Gamma=-2.0+-0.3stat+-0.2sys.Comment: 4 pages, 3 figures, accepted for publication in The Astrophysical
Journal Letters. Corrected typo