116 research outputs found

    Macroscopic quantum fluctuations in noise-sustained optical patterns

    Get PDF
    We investigate quantum effects in pattern formation for a degenerate optical parametric oscillator with walk-off. This device has a convective regime in which macroscopic patterns are both initiated and sustained by quantum noise. Familiar methods based on linearization about a pseudoclassical field fail in this regime and new approaches are required. We employ a method in which the pump field is treated as a c-number variable but is driven by the c-number representation of the quantum subharmonic signal field. This allows us to include the effects of the fluctuations in the signal on the pump, which in turn act back on the signal. We find that the nonclassical effects, in the form of squeezing, survive just above the threshold of the convective regime. Further, above threshold, the macroscopic quantum noise suppresses these effects

    Filtering the intensity of public concern from social media count data with jumps

    Get PDF
    Count time series obtained from online social media data, such as Twitter, have drawn increasing interest among academics and market analysts over the past decade. Transforming Web activity records into counts yields time series with peculiar features, including the coexistence of smooth paths and sudden jumps, as well as cross-sectional and temporal dependence. Using Twitter posts about country risks for the United Kingdom and the United States, this paper proposes an innovative state space model for multivariate count data with jumps. We use the proposed model to assess the impact of public concerns in these countries on market systems. To do so, public concerns inferred from Twitter data are unpacked into country-specific persistent terms, risk social amplification events, and co-movements of the country series. The identified components are then used to investigate the existence and magnitude of country-risk spillovers and social amplification effects on the volatility of financial markets

    Polarization-Dependent Phase of Light Propagating in Optical Fibers

    Get PDF
    As it propagates in a real single-mode fiber, light accumulates a phase delay and undergoes variations of its polarization state. These two phenomena are partly related to each other, owing to both well known geometric effects, i.e. the Pancharatnam's phase, and less known dynamic ones. This paper aims at reviewing these concepts, highlighting the polarization-depended phase of light that propagates in a single-mode fiber. We present a mathematical treatment using the familiar language of Jones and Stokes vectors and report experiments supporting the theory. The presented analysis has a general validity, and it can describe phase variation with respect to several parameters, such as distance, frequency and time. Its extension to multimode and multi-core fibers is also discussed. The results can be used for a better modelling and understanding of coherent transmission systems and interferometric fiber optic sensors

    Deep Learning-Based Phase Retrieval Scheme for Minimum-Phase Signal Recovery

    Get PDF
    We propose a deep learning-based phase retrieval method to accurately reconstruct the optical field of a single-sideband minimum-phase signal from the directly detected intensity waveform. Our method relies on a fully convolutional Neural Network (NN) model to realize non-iterative and robust phase retrieval. The NN is trained so that it performs full-field reconstruction and jointly compensates for transmission impairments. Compared to the recently proposed Kramers-Kronig (KK) receiver, our method avoids the distortions introduced by the nonlinear operations involved in the KK phase-retrieval algorithm and hence does not require digital upsampling. We validate the proposed phase-retrieval method by means of extensive numerical simulations in relevant system settings, and we compare the performance of the proposed scheme with the conventional KK receiver operated with a 4-fold digital upsampling. The results show that the 7% hard-decision forward error correction (HD-FEC) threshold at BER 3.8e-3 can be achieved with up to 2.8 dB lower carrier-to-signal power ratio (CSPR) value and 1.8 dB better receiver sensitivity compared to the conventional 4-fold upsampled KK receiver. We also present a comparative analysis of the complexity of the proposed scheme with that of the KK receiver, showing that the proposed scheme can achieve the 7% HD-FEC threshold with 1.6 dB lower CSPR, 0.4 dB better receiver sensitivity, and 36% lower complexity

    DAS Over Multimode Fibers With Reduced Fading by Coherent Averaging of Spatial Modes

    Get PDF
    We investigate the performance of distributed acoustic sensing over multi-mode fibers based on heterodyne phase-sensitive optical time-domain reflectometry. We report a mathematical model describing the relation between phase variation and applied strain in the presence of multi-mode propagation that supports the feasibility of distributed acoustic measurements over multi-mode fibers. We also propose a novel coherent averaging method that achieves up to a three-fold reduction of the noise floor compared to state-of-the-art methods

    Polarisation Patterns and Vectorial Defects in Type II Optical Parametric Oscillators

    Get PDF
    Previous studies of lasers and nonlinear resonators have revealed that the polarisation degree of freedom allows for the formation of polarisation patterns and novel localized structures, such as vectorial defects. Type II optical parametric oscillators are characterised by the fact that the down-converted beams are emitted in orthogonal polarisations. In this paper we show the results of the study of pattern and defect formation and dynamics in a Type II degenerate optical parametric oscillator for which the pump field is not resonated in the cavity. We find that traveling waves are the predominant solutions and that the defects are vectorial dislocations which appear at the boundaries of the regions where traveling waves of different phase or wave-vector orientation are formed. A dislocation is defined by two topological charges, one associated with the phase and another with the wave-vector orientation. We also show how to stabilize a single defect in a realistic experimental situation. The effects of phase mismatch of nonlinear interaction are finally considered.Comment: 38 pages, including 15 figures, LATeX. Related material, including movies, can be obtained from http://www.imedea.uib.es/Nonlinear/research_topics/OPO

    Noise-Induced Phase Separation: Mean-Field Results

    Get PDF
    We present a study of a phase-separation process induced by the presence of spatially-correlated multiplicative noise. We develop a mean-field approach suitable for conserved-order-parameter systems and use it to obtain the phase diagram of the model. Mean-field results are compared with numerical simulations of the complete model in two dimensions. Additionally, a comparison between the noise-driven dynamics of conserved and nonconserved systems is made at the level of the mean-field approximation.Comment: 12 pages (including 6 figures) LaTeX file. Submitted to Phys. Rev.

    Mode Coupling Analysis of Hollow Ring-Core Fibers for OAM Transmission

    Get PDF
    We present an analytical and numerical description of coupling between OAM modes in hollow ring-core fibers affected by stress birefringence and ellipticity The analysis paves the way to a better modeling of propagation in these fibers
    • …
    corecore