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Polarization coupling and pattern selection in a type-II optical parametric oscillator
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We study the role of a direct intracavity polarization coupling in the dynamics of transverse pattern forma-
tion in type-II optical parametric oscillators. Transverse intensity patterns are predicted from a stability analy-
sis, numerically observed, and described in terms of amplitude equations. Standing wave intensity patterns for
the two polarization components of the field arise from the nonlinear competition between two concentric rings
of unstable modes in the far field. Close to threshold a wavelength is selected leading to standing waves with
the same wavelength for the two polarization components. Far from threshold the competition stabilizes
patterns in which two different wavelengths coexist.
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I. INTRODUCTION

Pattern formation is a ubiquitous manifestation of nonl
earity @1,2#, which presents specially interesting features
nonlinear optical systems@3–5#. The search for transvers
structures in nonlinear optical systems is actively pursued
several reasons that include their possible application in
optical signal processing and the investigation of mac
scopic manifestations of quantum phenomena. These s
tures are the result of the interaction of nonlinearity a
diffraction in transverse spatially extended devices such
nonlinear optical cavities of a large Fresnel number. Amo
the nonlinear systems analyzed, optical parametric oscilla
~OPOs! have received a lot of attention from the theoretic
viewpoint. Available results include the analysis of patte
formation @6–10#, noise sustained structures@11#, domain
walls @12–14#, and localized structures@15–18#. A growing
interest in these transverse structures in OPOs arise also
the study of quantum spatial correlations present in th
patterns@5,19–21#. Transverse patterns in OPOs have be
recently observed in nonplane resonators@22#.

In an OPO two first harmonic~FH! fields ~signal and
idler! are generated inside the crystal by parametric do
conversion of the external pump field. In a type-I OPO, s
nal and idler fields have the same state of linear polarizat
In a type-II OPO, they are orthogonally polarized. This p
larization degree of freedom can be used for a nonlin
construction of new states of the emitted light. For examp
by means of a direct polarization coupling produced by
intracavity quarter wave plate (l/4 plate!, it is possible to
produce@23,24# states in which the signal and idler are d
generate in frequency, and phase locked. A general que
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that we address in this paper is the effect of this type
direct polarization coupling in the problem of transverse p
tern formation in a type-II OPO.

When considering transverse spatial degrees of freed
in a type-II OPO without a direct polarization coupling, the
are two different regimes. In one of them, characterized b
positive effective detuning, homogeneous solutions are
lected at threshold with an arbitrary relative phase betw
the signal and idler fields. For effective negative detunin
finite wave number is selected at threshold and a ph
pattern—traveling wave~TW!—is asymptotically selected
for each FH field, while the intensity remains homogeneo
@25,26#. The effects of direct polarization coupling betwee
the signal and idler in a type-II OPO for a positive effecti
detuning was discussed in Refs.@27,28#: Spatial domains of
equivalent, but different, self-phase-locked homogeneous
lutions appear. They are separated by phase polarization
main walls. These walls are generally Bloch walls who
motions lead to complex spatiotemporal states. In this pa
we consider the situation of negative effective detuning
order to characterize the way in which polarization coupli
modifies the process of pattern formation. In particular, o
expects that the coupling between the signal and idler
generate standing waves~SWs!, i.e., stripe intensity patterns
from the TWs that exist for the signal and idler when there
no direct polarization coupling.

For a type-II OPO with an intracavityl/4 plate and for
FH’s negative detunings, we predict, and numerically co
firm, that there is a threshold of pattern formation abo
which the FH’s far fields exhibit, during the transient dynam
ics, two concentric rings of growing unstable modes. The
fore, the coupling does not only lead from TWs to SWs, b
it introduces two different wavelengths, giving rise to a
interesting problem of wavelength competition and patt
selection. The values of the different wavelengths are c
trolled by thel/4 plate polarization coupling. In a ‘‘symmet
ric case’’~i.e., all the dynamical parameters for the signal a
idler are equal! we show that the two wavelengths coexist f
long times. Real and imaginary parts of each FH field pres
in this case SW patterns with different wavelengths wh
consist of domains of stripe patterns. For asymmetric F
coefficients and near threshold, we show that one of
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GONZALO IZÚS, MAXI SAN MIGUEL, AND DANIEL WALGRAEF PHYSICAL REVIEW E 66, 036228 ~2002!
wavelengths dominates and intensity stripe patterns~stand-
ing waves! with the same wavelength emerge for the sig
and idler. Far from threshold the dynamics is similar to t
symmetric case. This transition from wavelength coexiste
to dominance of one of the two competing wavelengths
described by means of an amplitude equation analysis.
amplitude equations give a full description of the observ
dynamics.

The paper is organized as follows. Section II reviews
mean-field equations for this system. In Sec. III, we anal
the threshold for pattern formation. The instability is chara
terized in terms of the eigenfunctions associated with
critical modes. In Sec. IV, we discuss numerically the d
namics of transverse pattern. In Sec. V, we derive amplit
equations for the critical modes, which give a clear interp
tation of the observed dynamics. We summarize our m
conclusions in Sec. VI.

II. MEAN-FIELD EQUATIONS

We consider an optical parametric oscillator that cons
of a ring optical cavity filled with a birefringent, nonlinea
quadratic medium, and is externally pumped by a unifo
laser beam. A direct polarization coupling between the
fields, which take into account the effect of an intracav
quarter wave plate, is also included in the model~see Fig. 1!.
This wave plate provides a polarization mixing between
signalAx and idlerAy fields @23,24#. The signal and the idle
can be either frequency degenerate or nondegenerate
pending on the frequency selection rules imposed by
combined effects of the parametric down-conversion,
cavity resonances, and the phase matching@29–31#; but they
are always polarization non-degenerate~type-II interaction!.
In the mean-field approximation, and considering t
paraxial and the single longitudinal mode approximation
all the fields, the equations describing the time evolution
the linear polarization components of the second harmo
~SH! @Bx,y(x,y,t)# and the FH@Ax,y(x,y,t)# slowly varying
envelopes of the electric fields in a type-II OPO are@24,28#

] tBx5gx8@2~11 iDx8!Bx1 iax8¹
2Bx12iK 0AxAy1E0

1c8By#,

FIG. 1. ~Left! Ring cavity filled with a passive quadratic me
dium. Mirrors 1 and 4 have transmission coefficientT!1, mirrors
2 and 3 have 100% reflectivity.EI , ER , andET are the incident,
reflected, and transmitted fields, respectively. Patterns are pred
in the transverse plane to propagation. The arrow indicates the
racavity quarter wave plate.~Right! The angleu between the quar-
ter wave plate’s fast axis and the crystal’s principal axis is indica
03622
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] tBy5gy8@2~11 iDy8!By1 iay8¹
2By2c8* Bx#,

] tAx5gx@2~11 iDx!Ax1 iax¹
2Ax1 iK 0Ay* Bx1cAy#,

] tAy5gy@2~11 iDy!Ay1 iay¹
2Ay1 iK 0Ax* Bx2c* Ax#,

~1!

where with no loss of generality we takeAx ,Bx as ordinary
polarized beams andAy ,By as extraordinary polarized@26#.
The coefficientsgx,y ,gx,y8 ~cavity decay rates!; Dx,y , Dx,y ,
andDx,y8 ~cavity detunings!; andax,y ,ax,y8 ~diffraction coef-
ficients! are defined as in Refs.@6,27#. Due to the birefrin-
gence of the nonlinear crystal, all the diffraction coefficien
can be slightly different, even when the signal and idler
frequency degenerate. Second harmonic cavity detunings
include corrections for a possible phase mismatchDK of the
parametric interaction. In order to be consistent with t
mean-field limit, we require thatDK!1/L, whereL is the
cavity length@11,31#. Other parameters are the nonlinear
K0 and the injected pumpE0 ~bifurcation parameter! that, for
the sake of simplicity, we take as real and polarized along
same direction than the phase-matched component of
second harmonic fieldBx . Hence,By neither is pumped nor
is nonlinearly coupled with other components of the field.
Eqs.~1! the direct polarization coupling constants (c,c8) ac-
count for the effects produced by thel/4 plate and they are
related to the phase mismatch and the axes of thel/4 plate
by

c;sin~2f! exp~ i j!, ~2!

wheref is the angle between thel/4 plate’s fast axis and the
principal axis of the crystal. The phasej is the round-trip
phase shift between the signal and idler at frequency deg
eracy~or betweenBx andBy for c8). The coupling strength
ucu depends on a number of factors, including mode mat
ing and Poynting vector walkoff@23#. Here we assume
propagation along the optical axis~i.e., we neglect spatia
walk-off!. We focus on the effects produced by the rotati
angle f, which is an important experimental parameter
control the effects described below. We note that a sim
coupling is associated with an intracavityl/2 plate@32#. Fi-
nally other forms of similar linear coupling terms betwe
the signal and idler considered in Refs.@27,28# are associated
with a birefringent and/or dichroic cavity mirror in a type-
OPO.

The linear couplingc breaks the phase invariance th
Eqs.~1! have forc50 under changes of the relative phase
the FH fields: @Ax ,Ay#→@exp(iw) Ax ,exp(2iw) Ay#. How-
ever, the phase of the signal and idler fields can be adju
in order to include the phase ofc in the FH fields; i.e, given
c5ucu exp(ij), the transformation @Ax ,Ay#→@Âx ,Ây#
5@exp(2ij/2) Ax ,exp(ij/2) Ay# leaves Eqs.~1! unchanged
except for the replacementc→ucu. For the sake of clarity, we
will then present our main results forc real. The generaliza-
tion for c complex is trivial using the phase transformation
the FH fields just described.
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III. LINEAR STABILITY ANALYSIS

A. Threshold analysis

In this section, we present the linear stability analysis
the steady-state solution of Eqs.~1! corresponding to the
OPO operating below the threshold of signal generati
This trivial uniform steady state~off state! is

Ax5Ay50,

Bx5~11 iDy8! E0 /@12Dx8Dy82uc8u21 i ~Dx81Dy8!#,

By52c8*Bx /~11 i Dy8!. ~3!

The threshold for transverse pattern formation is determi
by linearizing Eqs.~1! around this solution and looking fo
instabilities. The steady state becomes unstable only a
the directions of the FH components (Ax ,Ay) of the eigen-
vectors, and thus the analysis reduces to the study of
linearly coupled complex equations. Because of the comp
nature of the field variables, it is convenient to consider
real and the imaginary parts of these equations for each
field. The most general solution of the perturbations is he
given by a linear superposition of terms of the for

@Re(Ax,y),Im(Ax,y)#;exp@iqW•rW1l(qW)t#, where l(qW ) is the
growth rate of the perturbations andqW is its transverse wave
vector.

For c5c850, the linear stability analysis shows that th
trivial solution is stable foruFu,uFcu, whereF is a normal-
ized pump intensity

F5K0 E0 /~11 iDx8!. ~4!

For D̃5gxDx1gyDy.0 the most unstable mode corr
sponds to an homogeneous solutionq050. In this paper, we
focus on the caseD̃,0 for which the unstable modes a
threshold (uFcu51) correspond to transverse traveling wav
Ax ,Ay* .exp@iqW•rW1l(qW) t#, whose two-dimensional wav

vector qW lies on a circle centered at 0 with radiusq0

5A2D̃/ã, where ã5gxax1gyay . For uFu.uFcu and D̃

,0, anyqW mode on the circle, and the opposite mode for
orthogonal component of the field, can be selected at thr
old by means of spontaneous symmetry breaking. Henc
phase pattern appears above threshold forAx andAy ~travel-
ing waves! with opposite wave vectors, while the intensi
remains homogeneous in both polarizations@25,26#. It
should be noted that when idler and signal fields are deg
erate both in frequency and polarization, i.e., degene
type-I ~OPO! ~DOPO!, Eqs.~1! must be solved with the fur
ther conditionAx5Ay . In this case, standing waves stat
are selected at threshold@6#. The linear coupling ofAx with
Ay considered in this paper is expected to produce stan
waves for each polarization component also in a type
OPO.

For cÞ0 the threshold for pattern formation remains
uFcu51, but a main difference is that now the wave vecto
of the most unstable modes lie on two concentric circles
different radii. This gives rise to a wave number competiti
03622
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in the process of pattern formation, as shown below. Clo
expressions are hard to obtain in the general case, bu
gx5gy5g the two eigenvalues of the linearized equatio
that characterize the instability are

l1,25g F211
1

2
A4 uFu224 ucu222 ~Qx

21Qy
2!62YG ,

~5!

where we have defined

Q j5D j1a jq
2 ~ j 5x,y!,

Y5A24 uFu2 ~Qx2Qy!214 ucu2 ~Qx1Qy!21~Qx
22Qy

2!2

~6!

and we have introduced the normalized pump amplitude

F5~11 iDy8! K0 E0 /@12Dx8Dy82uc8u21 i ~Dx81Dy8!#,
~7!

which coincides withF given by Eq.~4! for c850. Two
other eigenvalues remain always negative. Note that the
malized form ofF @Eq. ~7!# implies that the linear coupling
between the two components of the second harmonic fi
modifies the instability threshold even whenBy is resonant.

To avoid cumbersome expressions, analytical results
derived in this section for the particular casegx5gy5g,
ax5ay5a, andDx5Dy5D(,0). In this case, the eigen
valuesl1,2(qW ) become

l1,25g@211AuFu22~D1a uqW u26c!2#, ~8!

where the plus~minus! sign corresponds tol1 (l2). From
Eq. ~8! we get the threshold of instability for perturbation
with an arbitrary wave vectorqW :

uF1,2~c!u2511@D1a uqW u26c#2, ~9!

where the plus~minus! sign corresponds toF1 (F2). There-
fore, for c,2D the instability takes place at the critica
thresholduFcu51 and the unstable modes at threshold cor
spond to transverse traveling waves whose two-dimensio
real wave vectorqW lies on either of two concentric circles
centered at 0 with radiusq1,2:

q1,2
2 5uqW 1,2u25

2D7c

a
. ~10!

In Fig. 2, we show the instability threshold for perturbatio
of different wave numbers. The thresholdFc51 is the same
for c50 andcÞ0, but forcÞ0 the instability takes place a
two different wavevectors of modulusq1,2 indicated in the
figure. Homogeneous perturbations (qW 50) have a larger in-
stability threshold. The homogeneous phase-locked solut
associated with this threshold are discussed in the Appen
We will not consider here the casec.2D.0 for which at
Fc51 only the modeq2 becomes unstable. In this case t
modeq150 becomes unstable for larger values of the pum
8-3
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The values of the most unstable wave numbersq1 andq2
depend on the absolute value ofc as follows from Eq.~10!
~Fig. 3!. In particular,q1,2

2 coincide with q0
2 for c50 and

vary linearly with ucu. The polarization coupling splits th
circle of unstable modes forc50 in two circles. The value of
c controls the magnitude of the split. We remark that forc

;uDu, uqW 1u;0 and patterns with very large wavelengths c
be expected. ForuFu.uFcu there is a band of unstable mod
associated with each eigenvalue. In Fig. 4, we show the
part of the eigenvaluesl1,2 as a function ofuqW u for the criti-
cal case (uFu5uFcu51) and for one case above thresho
All the modes with Re(l1,2).0 are linearly unstable. The
wave vectors with modulusuqW 1u or uqW 2u have the same maxi
mum growth rate:l1,2(qW 1,2)5g (211uFu).

When the damping, detuning, or diffraction paramet
for the signal and idler are different, the competing modes
wave numbersq1 andq2 have different thresholds. It follows
from the numerical analysis of Eq.~5! that the smaller wave
numberq1 becomes first unstable atuFcu51. In Fig. 5~a!, we
show the growth rate for perturbations of the trivial state a

FIG. 2. Scaled threshold of instabilityF for the trivial stationary
solution@Eq. ~3!# as a function ofq2 for the case of symmetric FH’s
coefficients. Solid~dashed! curve gives the threshold value ofF for
cÞ0 (c50). The critical thresholduFcu51 is indicated as a dotted
line. The instability takes place at two different wave vectors in
cated byq1 and q2 (q0 denotes the unstable wave vector forc
50). Parameters areK051, Dx,y520.8, Dx,y8 50, ax,y50.25,
ax,y8 50.125, c50.4, and c850.01. The diamond indicates th

threshold of instability for homogeneous perturbations (qW 50).

FIG. 3. Wave number of the critical unstable modes as a fu
tion of ucu. The lower branch corresponds toq1 and the upper one
to q2. Parameter values as in Fig. 2.
03622
al
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function of uqW u for a case in whichuFu51.0019. The unstable
mode of smaller wave numberq1 dominates in the linear
regime. The difference in growth rates forq1 andq2 depends
on the pumping level. For larger values of the pump,
growth rates of both unstable modes are of the same or
being the growth rate ofq1 larger than the one ofq2 @see Fig.

-

-

FIG. 4. Real part of the eigenvaluesl1,2 as a function ofuqW u for
the case of symmetric FH’s coefficients. The solid lines corresp
to F51.06 and the dotted to criticalityF5Fc51. Left branches
correspond tol1 and the right ones tol2. Heregx,y5gx,y8 51 and
the values of the other parameters are the same as in Fig. 2.
most unstable modesq1 andq2 correspond to the maximum of eac
line. The level Re(l1,2)50 is also indicated as a dashed horizon
line as a reference.

FIG. 5. Growth rate of the unstable modes as a function ofuqW u in
a case in which the FH’s coefficients are different.~a! Near thresh-
old: F51.0019 ~solid line! and F51 ~dotted line!. ~b! Far from
threshold:F51.02. Coefficients values areK051, Dx,y520.8,
Dx,y8 50, gx5gx850.9901, gy5gy851.01, ax50.2475, ay

50.2525,ax,y8 50.125,c50.4, andc850.01.
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5~b!#. In the following section, we show that this fact deep
affects the nonlinear mode competition dynamics of the s
tem.

We finally note that for asymmetric FH’s coefficients, th
critical modes have in general real eigenvalues@i.e.,
Im„l1,2(qW 1,2)…50#. However, for very small values ofc, i.e.,
when uqW 1u;uqW 2u, there is a small interval of values of th
external pumpF, which includes the critical valueFc51,
where Im„l1,2(qW 1,2)…Þ0. In this limit of c→0, the instabil-
ity becomes convective, similarly to a situation considered
Ref. @33#.

B. Critical modes

Next we consider some features of the early time dyna
ics of pattern formation that can be understood in terms
the eigenvectors corresponding to the eigenvalues of the
earized problem discussed above. First, we introduce the
field as the Fourier transform of the near field, where the n
field is the transverse field configuration at the input/out
cavity mirror. The far-field componentsÃqW(t) of Ax ~for ex-
ample! are defined by

Ax~rW,t !5
1

2pE2`

`

ÃqW~ t ! exp~ iqW •rW ! dqx dqy . ~11!

In Fig. 6, we show numerical results@34# for a typical
transverse profile of theAx andAy FH fields at an early time
after the pump is increased beyond its threshold value. Th
results correspond to the case of symmetric coefficient
which two competing wave numbers have the same gro
rate. In Fig. 6~a!, we show the near field of the signal inte
sity pattern and its far field. The two concentric rings of t
far field correspond to unstable wave vectorsqW with arbitrary
orientation and a wave number aroundq1 ~inner ring! andq2
~outer ring!. The near field is the result of the interferen
among all the unstable modes of both rings in the far fie
However, the interference takes place in such a way that
real part ofAx is associated with the unstable modes of
outer ring, while its imaginary part is associated with t
unstable modes of the inner ring. In addition, there is a h
correlation between the transverse structures observed in
signalAx and idlerAy fields. This is illustrated in Figs. 6~b!–
6~d!. In Figs. 6~b! and 6~c!, we show the near field of the rea
and imaginary parts ofAx andAy . It is observed that the rea
and imaginary parts of the fieldAx support transverse pa
terns with different wavelengths. The same fact is obser
03622
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in the idler field Ay , but real and imaginary parts have
different wavelength than forAx . In fact we observe tha
Re(Ax).Im(Ay), while Im(Ax).Re(Ay). In Fig. 6~d!, we
show the far fields of Re(Ax) and Im(Ax). This gives evi-
dence of the different wave number associated with Re(Ax)
and Im(Ax). The two rings in the far fields of Re(Ax) and
Im(Ax) correspond, respectively, to the outer and inner rin
of Fig. 6~a!.

These numerical facts can be explained in terms of

eigenvectorsL1,2(qW ) associated with the eigenvaluesl1,2 in-
troduced in Eq.~8!. They can be written as

FIG. 6. A snapshot att5900 of the FH’s fields spontaneousl
generated from random initial conditions close to the trivial stea

state given by Eq.~3!. ~a! Left: near fielduAxu; right: far field uÃqW u.
~b! Ax field. Left: Re(Ax); right: Im(Ax). ~c! Ay field. Left: Im(Ay);
right: Re(Ay). ~d! Absolute value of the Fourier transform. Lef
Re(Ax). Right: Im(Ax). Parameters areF51.16, K051, Dx,y5

20.8, Dx,y8 50, gx,y5gx,y8 51, ax,y50.25, ax,y8 50.125, c50.4,
andc850.01.
@Re~Ax!,Im~Ax!,Re~Ay!,Im~Ay!#T5L1~qW !5C1@k1,1,1,2k1#T exp~ iqW •rW !

L2~qW !5C2@1,2k2 ,k2,1#T exp~ iqW •rW !, ~12!
8-5
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where we have introduced

k15
2l11F21

D1a uqW u21c
,

k25
2l21F21

D1a uqW u22c
, ~13!

and the normalization constantsCj
215A2 (11uk j u2), j

51,2. For simplicity here we takeF to be real~i.e., resonant
pump field!. Exactly at threshold,k1,2 vanishes for the cor-
responding critical wave vectork1,2(qW 1,2)50. The general
dependence ofk1,2 on the wave number at threshold
shown in Fig. 7. At threshold,F5Fc51 and the eigenvec
tors L1,2(qW ) are damped for anyqW exceptL1(qW 5qW 1) and
L2(qW 5qW 2):

L1~qW 1!5
1

A2
@0,1,1,0#T exp~ iqW 1•rW !,

L2~qW 2!5
1

A2
@1,0,0,1#T exp~ iqW 2•rW !, ~14!

which are marginal~zero growth rate! and define the direc
tion in the functional space along which the instability tak
place. The form of the eigenvectors~14! explains our nu-
merical finding~Fig. 6! that at short times, when the linea
approximation to the dynamics remains valid, the co
ponents of the FH’s fields @Re(Ax),Im(Ay)# and
@ Im(Ax),Re(Ay)# only sustain patterns with a wave vector
modulusuqW 2u or uqW 1u, respectively. As we discuss in the fo
lowing section, this gives rise to pattern formation with co
peting wavelengths that can be rather different.

There is an interesting symmetry in the far-field comp
nents of the first harmonics fields. We focus in theAx field,
but the discussion is also valid forAy . Our numerical results
indicate, as shown, for example, in Fig. 8, that the r
~imaginary! part of the far-field componentÃqW(t) is an odd

FIG. 7. Amplitudesk1,2 ~solid line! as a function ofuqW u. The real
part of the critical eigenvaluesl1,2 ~dotted lines! and the zero level
~dashed line! are also plotted as reference. HereF51 and the val-
ues of the other parameters are the same as Fig. 4.
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function for qW 5qW 1 and an even function forqW 5qW 2 ~even
function for qW 5qW 1 and an odd function forqW 5qW 2). This
property implies that

Ã2qW 1
52ÃqW 1

* ,

Ã2qW 2
5ÃqW 2

* . ~15!

Given that in the linear regime at threshold only excitatio
with wave vectorsqW 2 or qW 1 contribute to the resulting struc
tures in the real-valued fields Re(Ax) or Im(Ax), respec-
tively, we find that the basic excitations for Re(Ax) and
Im(Ax) are standing waves of the form

Re~Ax!;ÃqW 2
exp~ iqW 2•rW !1Ã2qW 2

exp~2 iqW 2•rW !,

i Im~Ax!;ÃqW 1
exp~ iqW 1•rW !1Ã2qW 1

exp~2 iqW 1•rW !. ~16!

These standing waves are the interference between two
posite modes of the same ring of the far field that satisfy

FIG. 8. A typical result for a cut of the far-field~FF! amplitude

ÃqW(t) along the lineqy50 for theAx field during the transient state
~a! Real part;~b! imaginary part. Parameters areF51.06, K051,
Dx,y520.8, Dx,y8 50, gx5gx850.9901, gy5gy851.01, ax

50.2475,ax50.2525,ax,y8 50.125,c50.4, andc850.01.
8-6
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~15!. Both modes have the same amplitude, but the glo
phase of the superposition of the two modes is differen
each ring.

It is interesting to note that the circularly polarized com
ponentsA6 of the vectorial FH field give a natural descrip
tion of the instability. We have already discussed that,
threshold, Re(Ax).Im(Ay) and Im(Ax).Re(Ay), so that
A15(Ax1 iAy)/A25 iA2 Im(Ax) and A25(Ax2 iAy)/A2
5A2 Re(Ax). Therefore, it follows from Eq.~16! that the
instability for A1 (A2) takes place atq1 (q2). The two
circularly polarized components will emerge at the instabi
as standing waves intensity patterns of different wave nu
bers. In fact, for symmetric coefficients and in the lineariz
version of Eqs.~1! around the trivial solution~3!, A1 andA2

are decoupled. They are nonlinearly coupled through
pump fieldBx .

Our above discussion is for real values of the parametec.
Whenc is complex (jÞ0), both the real and imaginary par
of Ax andAy have contributions of unstable modes of wa
numbersq1 and q2. Therefore, we observe transverse p
terns with competing wavelengths in the real and the ima
nary parts ofÂx,y . However, by changing the global phase
the FH fields, the problem can be considered in terms oc
real, as previously pointed out.

FIG. 9. Snapshots as in Fig. 6 at timet57800. Parameters ar
the same as Fig. 6.
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IV. TRANSVERSE INTENSITY PATTERNS

In this section, we give a numerical description@34# of the
patterns that are asymptotically selected after a regime
nonlinear competition among the unstable modes of w
numbersq1 andq2. A theoretical justification of these result
is given in the following section in terms of an amplitud
equation. We consider separately the cases of symmetric
nonsymmetric coefficients for the FH fields.

A. Symmetric coefficients

When gx5gy5g, ax5ay5a, and Dx5Dy5D, the
growth rates of the most unstable modes in the two circle
radii q1 and q2 are equal, and the instability takes place
both circles simultaneously~see Fig. 4!. In this case the non-
linear competition keeps wave vectors in both circles in
far field excited for long times. The real and imaginary pa
of the FH fields show patterns with different wavelengths,
discussed in Sec. III. To illustrate the dynamical evolutio
we show in Figs. 9 and 10 snapshots of the pattern confi
ration at two different times. The two rings in the far fie
persist at long times. The pattern that appears in the lo
time dynamics presents domains in which real and imagin
parts of each of the FH near fields show standing waves
arbitrary orientation and of different wavelengths for the re

FIG. 10. Snapshots as in Fig. 6 at timet542 800. Parameters
are the same as Fig. 6.
8-7
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and imaginary parts. The arbitrary orientation of these sta
ing waves comes from the spontaneous choice of two op
site wave vectors in the corresponding ring of the far fie
Thus, the general picture is that there is long time comp
tion among standing waves of different orientations and t
different wave numbers.

A limiting situation is the case in which the inner rin
collapses to the pointqW 50. This situation takes place whe
c5uDxu. In this case, the growth of uniform domains occu
in one of the components of the FH vector field while t
other component sustains standing waves of local arbit
orientation, as shown in Fig. 11. This structure represen
case in which patterns and uniform domains coexist in
same complex field as an effect induced by the direct po
ization coupling. This situation takes place near signal re
nance for very small values ofc.

B. Nonsymmetric coefficients

When the damping, diffraction, or detuning coefficients
the signal and idler are different, the nonlinear mode com
tition depends very much on how far above threshold
OPO is pumped. Near threshold, the relative difference in
magnitude of the growth rate of the unstable modes on
circles of wave numbersq1 andq2 is important, as follows
from Fig. 5~a!. This fact produces a strong change in t
dynamics of the system. In Figs. 12, 13, and 14, we sh
snapshots of configurations at different times of the dyna
cal evolution. After a transient linear regime, discussed

FIG. 11. A snapshot at timet53000 of the fieldAx spontane-
ously generated from random initial conditions for a case in wh

the modeqW 50 is one of the most unstable modes.~a!, ~b!, ~c! and
~d! show, respectively, the intensity, far field, real part and ima
nary part of the signal field. In~c! and ~d! patterns with very dif-
ferent wavelength can be appreciated. Parameter values aF
51.08, K051, Dx,y520.6, Dx,y8 50, gx5gx85gy5gy851, ax

5ay50.25, c50.6 andc850.01.
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Sec. III and which is represented here by Fig. 12, there
nonlinear competition between the two circles of unsta
modes at intermediate times. This is shown in Fig. 13 wh
the far fields of Re(Ax) and Im(Ay) are seen to have com
peting contributions from the two circles. At late times th
inner circle wins the competition and the final pattern is
standing wave of wave numberq1 both forAx andAy . This
nonlinear wave number selection can be traced back to
behavior of the growth rate, as shown in the following se
tion. For long times there is also a spontaneous breakin
the rotational symmetry and a standing wave in an arbitr
direction is selected, as shown in Fig. 14. The real and ima
nary parts of the FH fields show, in this case, patterns w
the same wavelengths. The resulting structures originat
the interference between two arbitrary, but opposite, w
vectors of the inner circle. The resulting stripe intensity p
tern is similar to that predicted for type-I DOPO in the sen
that it is the interference between two opposite travel
waves@6#. However, physically, the energy and momentu
conservation in the parametric down-conversion of pu
photons only implies off-axis emission of idler and sign
photons along two opposite directions without interferen
between them because they have orthogonal polariza
Due to polarization coupling, pure traveling waves are n

h

-

FIG. 12. Snapshots as in Fig. 6 at timet5100. Parameter value
are E051.002, K051, Dx,y520.8, Dx,y8 50, gx5gx850.9901,
gy5gy851.01, ax50.2475,ay50.2525,ax,y8 50.125,c50.4, and
c850.01.
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solutions of Eqs.~1!. The l/4 plate provides a mixing o
polarization that allows the photons of the same FH field
interfere, producing a standing wave. This phenomeno
the same one that occurs in resonantly coupled com
Ginzburg-Landau equations@35,36#: the linear~polarization!
coupling allows the formation of standing waves as the re
of the interaction between opposite modes in the far field
this case, the inner ring.

Far from threshold, the growth rates of the unsta
modesq1 andq2 are of the same order@see Fig. 5~b!# and the
dynamics of the system in this regime is equivalent to
symmetric case, as we prove in the following section. The
fore, in the asymmetric case the intensity of the exter
pump can be used to stabilize both rings of the far fi
which have a competing coexistence for long times and
from threshold. In Fig. 15, we show a typical long-time sta
for this regime.

V. AMPLITUDE EQUATIONS

Close to the instability threshold and using the gene
methods of nonlinear dynamics and pattern formation the
one may derive amplitude equations for the patterns
scribed numerically in the preceding section. It is now w
known that equations are able to describe pattern evolut
selection, and stability. In particular, if, for simplicity, on

FIG. 13. Snapshots as in Fig. 12 at timet53200.
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FIG. 14. Snapshots as in Fig. 12 at timet517 600.

FIG. 15. A snapshot at timet550 500 of the fieldAx spontane-
ously generated from random initial conditions close to the triv
steady state in the asymmetric case.~a! ~b!, ~c!, and ~d! show the
intensity, far field, real part and imaginary part ofAx , respectively.
Parameters are as in Fig. 12 exceptF51.06.
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considers only the critical modes identified in Sec. III, field variables may by expressed as

@Re~Ax!,Im~Ax!,Re~Ay!,Im~Ay!#T5A1 @0,1,1,0#T exp~ iqW 1•rW !1A21 @0,1,1,0#T exp~2 iqW 1•rW ! ~17!

whereAi(t) are slowly evolving amplitudes associated with the modes with wave vectorqW i . Given the relations~15!, we have
chosen here to define the amplitudesA61 andA62 as Ã6qW 1

5 iA61 and Ã6qW 2
5A62.

Standard analysis@2# leads to the following evolution equations for the symmetric case (Qx5Qy and c85Dx850 for
simplicity!:

] tA615g~ uFu21!A611
K0

2
@A61 ~B̃x1B̃x* !01A71 ~B̃x1B̃x* !62qW 1

1 iA2 ~B̃x2B̃x* !6qW 12qW 2
1 iA22 ~B̃x2B̃x* !6qW 11qW 2

#,

] tA625g~ uFu21!A621
K0

2
@A62 ~B̃x1B̃x* !01A72 ~B̃x1B̃x* !62qW 2

1 iA1 ~B̃x2B̃x* !6qW 22qW 1
1 iA21 ~B̃x2B̃x* !6qW 11qW 2

#,

~18!
g

i-

the
he
where

] t~B̃x!qW52~11 ia8q2! ~B̃x!qW12iK 0~AxAỹ!qW , ~19!

wherea85ax8 and (•••̃)qW indicates Fourier transform. Usin
Eq. ~19! and time scales separation near threshold (uFu21
!1) one may write (B̃x) j5Bj as an expansion in the ampl
tudesAi . One has, at lowest order,

B0524K0 ~A1A211A2A22!,

B62qW i
52

2K0A6 iA6 i

114ia8 qi
2

,

B6qW 26qW 1
.0. ~20!

This leads to

] tA615g~ uFu21!A6124K0
2A61

2 A7124K0
2A61A2A22

24h1K0
2A71A61

2 ,

] tA625g~ uFu21!A6224K0
2A62

2 A7224K0
2A62A1A21

24h2K0
2A72A62

2 , ~21!
03622
where

h1,2
2152 @11~4a8 q1,2

2 !2#.

SinceA215A1* andA225A2* , as follows from Eq.~15! and
the definition of the amplitudesA61 andA62 after Eq.~17!,
one may finally write

] tA15g~ uFu21!A124K0
2 A1 @~11h1!uA1u21uA2u2#,

] tA25g~ uFu21!A224K0
2 A2 @~11h2!uA2u21uA1u2#.

~22!

These equations describe a weak competition between
amplitudesA1 andA2, so that the stable steady states of t
system are given by

uA1u25
h2

h11h21h1h2

g~ uFu21!

4K0
2

,

uA2u25
h1

h11h21h1h2

g~ uFu21!

4K0
2

. ~23!

These expressions are still valid whenD8 andc8 are differ-
ent from zero, withh1,2 given by
h1,25
1

2

11c821~D814a8 q1,2
2 !2

@11~c81D814a8 q1,2
2 !2# @11~c82D824a8 q1,2

2 !2#
. ~24!

The asymptotic states of the dynamics, Eqs.~23!, correspond to patterns built on two wave vectorsqW 1 andqW 2, as confirmed by
the numerical results of the preceding section. However, when the kinetic coefficients ofx andy field components are slightly
different (QxÞQy ,uQx2Qyu!Qx1Qy), the growth ratesl1,2 of critical modes become different~see Fig. 5! and the
amplitude Eqs.~22! become

] tA15l1A124K0
2 A1~ uA1u21uA2u2!24h1K0

2 A1 uA1u2,
8-10
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POLARIZATION COUPLING AND PATTERN SELECTION . . . PHYSICAL REVIEW E66, 036228 ~2002!
] tA25l2A224K0
2 A2 ~ uA1u21uA2u2!24h2K0

2 A2 uA2u2,
~25!

where l1.l2. In this case, patterns with wave vectorqW 1
only develop at, and slightly beyond, threshold. The cor
sponding steady state is

uA1u25
l1

4K0
2~11h1!

, uA2u50. ~26!

Such patterns are stable provided thatl2,l1 /(11h1).
When l1 reachesl2(11h1) they become unstable, and
the domain wherel1 is larger thanl2(11h1), patterns with
both wave vectorsqW 1 and qW 2 are stable. Their amplitude i
given by

uA1u25
l1 ~11h2!2l2

4K0
2~h11h21h1h2!

,

uA2u25
l2 ~11h1!2l1

4K0
2~h11h21h1h2!

. ~27!

The two types of behavior~close and far from threshold!
have been described in our numerical results in the prece
section. Furthermore, on increasing pumping beyond thre
old, one observes a crossover between monomode patt
with wave vectors corresponding to the maximum grow
rate, and bimodal patterns. For growth rates given by Eq.~5!,
transition between monomodal and bimodal patterns oc
for small anisotropies @ u(Dx2Dy)/(Dx1Dy)u!1,u(ax
2ay)/(ax1ay)u!1# at

uFu511S 21h2

2h2
D uaxDx2ayDyu

Aaxay

. ~28!

VI. CONCLUSION

In conclusion, we have shown that standing wave int
sity patterns can be generated in type-II optical parame
oscillators. They appear spontaneously in the transv
plane when there is a direct polarization coupling betwe
the signal and idler fields, produced for example, by an
racavity quarter wave plate. Such a coupling also gives
to two competing wavelengths in the system.

In the transient dynamical regime after the pump
switched on above its threshold value; there is a competi
between two rings of unstable modes. This gives rise
transverse patterns with different wavelengths for the r
and imaginary parts of the FH’s fields. We have describ
two dynamical regimes. In the first one, which correspon
to symmetric FH’s parameters, the far field is composed
two concentric rings. The real and imaginary parts of each
the FH’s fields show patterns with different wavelengths. F
asymmetric FH’s coefficients, the dynamical regime depe
on the distance from the threshold. Near threshold, the
namical process of pattern competition leads to the do
nance of a unique wavelength, selecting a transverse s
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intensity pattern with the same wavelength for the signal a
idler. Far from threshold, the dynamics is equivalent to
symmetric case so that the strength of the external pump
be used to stabilize the two competing wavelengths. Am
tude equations for the vectorial~critical! modes have been
derived and they confirm our numerical observations. In p
ticular, it is worth noting that the structure of these equatio
reflects the vectorial nature of the fields, which introduc
nontrivial couplings between the modes.
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APPENDIX: UNIFORM PHASE-LOCKED SOLUTIONS

In addition to the trivial uniform solution given by Eq
~3!, Eqs. ~1! have other uniform stationary solutions fo
Dx /Dy.0 considered in Ref.@24#. These are the dominan
solutions when transverse effects are not taken into acco
For the sake of completeness, a brief description of th
solutions forDx,y,0 is given here. Equations~1! admit for
Ax,y5ax,y exp(ifx,y) two uniform stationary solutions, which
take the form

cos~fd1j!5
12G2

2ucuG
,

cos~fs!5
~Dx1G Dy!22 ucu G sin~fd1j!

2 K0 E0 cp
,

ax
25

2 cp E0 G sin~fs!212G2

4 cp G2
,

ay5G ax , ~A1!

where G25Dx /Dy , cp51/(12uc8u2), and fd,s5fx7fy .
The existence of these solutions requires forGÞ1 that ucu
.u12G2u/(2G). This relation defines a circle in the com
plex plane ofc, inside which no stationary uniform solution
exist.

The first of Eqs.~A1! indicates that these homogeneo
solutions are self-phase-locked. Due to the fact that the fu
tion arccos is a multivalued function in the range@2p,p#,
two branches of uniform phase-locked solutions exist. E
branch has a different threshold. Uniform solutions are ne
spontaneously observed forDx,y,0 because they have
larger threshold of instability than the solution with a fini
wave number. The threshold of the uniform branch with
lower threshold is indicated by a diamond in Fig. 2. Note th
this is larger than the threshold for pattern formationuFcu
51. The second branch of uniform solutions, with a larg
threshold value, is unstable, and it is not observed, not e
for positive FH’s detunings where uniform solutions dom
nate and domain walls between them have been repo
@27,28#. The homogeneous solutions described here are
ferent from those in Fig. 11, obtained in the limit ofq150.
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