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We study the role of a direct intracavity polarization coupling in the dynamics of transverse pattern forma-
tion in type-Il optical parametric oscillators. Transverse intensity patterns are predicted from a stability analy-
sis, numerically observed, and described in terms of amplitude equations. Standing wave intensity patterns for
the two polarization components of the field arise from the nonlinear competition between two concentric rings
of unstable modes in the far field. Close to threshold a wavelength is selected leading to standing waves with
the same wavelength for the two polarization components. Far from threshold the competition stabilizes
patterns in which two different wavelengths coexist.
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[. INTRODUCTION that we address in this paper is the effect of this type of
direct polarization coupling in the problem of transverse pat-
Pattern formation is a ubiquitous manifestation of nonlin-tern formation in a type-11 OPO.
earity [1,2], which presents specially interesting features in  When considering transverse spatial degrees of freedom
nonlinear optical systemg3—5]. The search for transverse in a type-Il OPO without a direct polarization coupling, there
structures in nonlinear optical systems is actively pursued foare two different regimes. In one of them, characterized by a
several reasons that include their possible application in allpositive effective detuning, homogeneous solutions are se-
optical signal processing and the investigation of macrofected at threshold with an arbitrary relative phase between
scopic manifestations of quantum phenomena. These struthe signal and idler fields. For effective negative detuning a
tures are the result of the interaction of nonlinearity andfinite wave number is selected at threshold and a phase
diffraction in transverse spatially extended devices such apattern—traveling wavgTW)—is asymptotically selected
nonlinear optical cavities of a large Fresnel number. Amondor each FH field, while the intensity remains homogeneous
the nonlinear systems analyzed, optical parametric oscillatoff®5,26. The effects of direct polarization coupling between
(OPOs have received a lot of attention from the theoreticalthe signal and idler in a type-ll OPO for a positive effective
viewpoint. Available results include the analysis of patterndetuning was discussed in Ref&7,28: Spatial domains of
formation [6—10], noise sustained structur¢sl], domain equivalent, but different, self-phase-locked homogeneous so-
walls [12—14], and localized structurdd5-18. A growing  lutions appear. They are separated by phase polarization do-
interest in these transverse structures in OPOs arise also fromain walls. These walls are generally Bloch walls whose
the study of quantum spatial correlations present in thesmotions lead to complex spatiotemporal states. In this paper
patterns[5,19-21. Transverse patterns in OPOs have beerwe consider the situation of negative effective detuning in
recently observed in nonplane resona{@2]. order to characterize the way in which polarization coupling
In an OPO two first harmoni¢FH) fields (signal and modifies the process of pattern formation. In particular, one
idler) are generated inside the crystal by parametric downexpects that the coupling between the signal and idler can
conversion of the external pump field. In a type-I OPO, sig-generate standing wavéSWs, i.e., stripe intensity patterns,
nal and idler fields have the same state of linear polarizatiorfrom the TWs that exist for the signal and idler when there is
In a type-Il OPO, they are orthogonally polarized. This po-no direct polarization coupling.
larization degree of freedom can be used for a nonlinear For a type-Il OPO with an intracavity/4 plate and for
construction of new states of the emitted light. For exampleFH’s negative detunings, we predict, and numerically con-
by means of a direct polarization coupling produced by arfirm, that there is a threshold of pattern formation above
intracavity quarter wave platen(4 plate, it is possible to  which the FH’s far fields exhibit, during the transient dynam-
produce[ 23,24 states in which the signal and idler are de-ics, two concentric rings of growing unstable modes. There-
generate in frequency, and phase locked. A general questidare, the coupling does not only lead from TWs to SWs, but
it introduces two different wavelengths, giving rise to an
interesting problem of wavelength competition and pattern
*Permanent address: Departamento dscB) Facultad de Cien- selection. The values of the different wavelengths are con-
cias Exactas y Naturales, Universidad Nacional de Mar del Plata yrolled by the\/4 plate polarization coupling. In a “symmet-
CONICET, Funes 33507600 Mar del Plata, Argentina. Electronic ric case”(i.e., all the dynamical parameters for the signal and
address: izus@mdp.edu.ar idler are equalwe show that the two wavelengths coexist for
TPermanent address: Center for Nonlinear Phenomena and Coreng times. Real and imaginary parts of each FH field present
plex Systems, Universiteibre de Bruxelles, Campus Plaine, Blvd. in this case SW patterns with different wavelengths which
du Triomphe B.P 231, 1050 Bruxelles, Belgium. consist of domains of stripe patterns. For asymmetric FH’s
*URL: http://www.imedea.uib.es/PhysDept coefficients and near threshold, we show that one of the
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FIG. 1. (Left) Ring cavity filled with a passive quadratic me- where with no loss of generality we takg ,B, as ordinary
dium. Mirrors 1 and 4 have transmission coeffici@nt 1, mirrors  polarized beams and, ,B, as extraordinary polarizef@6].
2 and 3 have 100% reflectivit§g, , Eg, andE; are the incident, The coefficientsyxyy,%’(’y (cavity decay rates Ax,yv Ax,ya
reflected, and transmitted fields, respectively. Patterns are predictethd A | y (cavity detunings and ay , , y (diffraction coef-
in the_ transverse plane to prppagation. The arrow indicates the i”ﬁcients} are defined as in Ref§6,27]. Due to the birefrin-
racavity quarter wave platéRighy) The angle¢ between the quar-  gance of the nonlinear crystal, all the diffraction coefficients
ter wave plate’s fast axis and the crystal’s principal axis is |nd|catedcan be slightly different, even when the signal and idler are
) _ _ ) frequency degenerate. Second harmonic cavity detunings can
wavelengths dominates and intensity stripe pattéstend-  include corrections for a possible phase mismatéhof the
ing waves with the same wavelength emerge for the signalyarametric interaction. In order to be consistent with the
and idler. Far from threshold the dynamics is similar to themean-field limit, we require thaAK<1/L, wherelL is the
symme.tric case. This transition from Wavglength coexistenp@avity length[11,31. Other parameters are the nonlinearity
to domlnance of one of the two_ competmg_ waveleng_ths i<, and the injected pumg, (bifurcation parametgthat, for
described by means of an amplitude equation analysis. Th@e sake of simplicity, we take as real and polarized along the
amphtu_de equations give a full description of the observedsgme direction than the phase-matched component of the
dynamics. _ , , second harmonic fiel8,. Hence B, neither is pumped nor
The paper is organized as follows. Section Il reviews thgg ponlinearly coupled with other components of the field. In
mean-field equations for this system. In Sec. Ill, we anaIyZ@qs_(l) the direct polarization coupling constants¢’) ac-
the threshold for pattern formation. The instability is charac-cont for the effects produced by thé4 plate and they are

terized in terms of the eigenfunctions associated with theg|sted to the phase mismatch and the axes ohideplate
critical modes. In Sec. IV, we discuss numerically the dy-|,

namics of transverse pattern. In Sec. V, we derive amplitude
equations for the critical modes, which give a clear interpre- o .
tation of the observed dynamics. We summarize our main c~sin(2¢) exp(ié), 2

conclusions in Sec. VI. _ .
whered is the angle between theg4 plate’s fast axis and the

principal axis of the crystal. The phageis the round-trip
Il. MEAN-FIELD EQUATIONS phase shift between the signal and idler at frequency degen-

We consider an optical parametric oscillator that consist§racy (or betweerB, andB, for c’). The coupling strength
of a ring optical cavity filled with a birefringent, nonlinear !C| depends on a number of factors, including mode match-
quadratic medium, and is externally pumped by a uniformind and Poynting vector walkoff23]. Here we assume
laser beam. A direct polarization coupling between the FHPropagation along the optical axige., we neglect spatial
fields, which take into account the effect of an intracavityWalk-off). We focus on the effects produced by the rotation
quarter wave plate, is also included in the modele Fig. 1.~ angle ¢, which is an important experimental parameter to
This wave plate provides a polarization mixing between thecontrol the effects described below. We note that a similar
signalA, and idlerA, fields[23,24. The signal and the idler Ccoupling is associated with an intracaviy2 plate[32]. Fi-
can be either frequency degenerate or nondegenerate, dedlly other forms of similar linear coupling terms between
pending on the frequency selection rules imposed by théhe signal and idler considered in Reff87,28 are associated
combined effects of the parametric down-conversion, thavith a birefringent and/or dichroic cavity mirror in a type-I|
cavity resonances, and the phase match@®y-31); but they ~OPO. i ] )
are always polarization non-degenerétgpe-I| interaction. The linear couplingc breaks the phase invariance that
In the mean-field approximation, and considering theEds.(1) have forc=0 under changes of the relative phase of
paraxial and the single longitudinal mode approximation forthe FH fields:[A,,Ay]—[exp(e) Ac.exp(-ip) Ay]. How-
all the fields, the equations describing the time evolution foreVer, the phase of the signal and idler fields can be adjusted
the linear polarization components of the second harmonié order to include the phase ofin the FH fields; i.e, given
(SH) [Byy(x,y,t)] and the FH A, ,(x,y,t)] slowly varying ~ c=|c|exp(é), the transformation [A, A ]—=[A,,A]
envelopes of the electric fields in a type-1l OPO f24,28 =[exp(—i&2) A ,exp(&2) Ay] leaves Egs(1l) unchanged
except for the replacemeat-|c|. For the sake of clarity, we

9B, = y;[—(1+iA>’<)Bx+ia;VZBX+2iKOAXAy+E0 v_viII then present our r_nf';\in re_sults farreal. The general_iza-
tion for c complex is trivial using the phase transformation of
+c'By], the FH fields just described.
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[ll. LINEAR STABILITY ANALYSIS in the process of pattern formation, as shown below. Closed

expressions are hard to obtain in the general case, but for

_ _ _ N ~ ¥x=7vy=7 the two eigenvalues of the linearized equations
In this section, we present the linear stability analysis ofthat characterize the instability are

the steady-state solution of Eqgl) corresponding to the

OPO operating below the threshold of signal generation. 1 5 5 5 5

This trivial uniform steady statéoff state is A=y —1+ 2 V4[F[*-4]c]*-2 (O5+0))x2Y |,

A. Threshold analysis

A=A, =0, ©

_ _ where we have defined
By=(1+iA)) Eo/[1-AfA,—[c'[*+i(A+A))],
O;=A;+aj0” (j=x.y),

By=—C *B,/(1+i A)). 3
Y =\-4[F[*(0,—0,)*+4]c|*(0,+0,)°+(0;-07)*
The threshold for transverse pattern formation is determined 6
by linearizing Eqs(1) around this solution and looking for
instabilities. The steady state becomes unstable only alongnd we have introduced the normalized pump amplitude
the directions of the FH component8,(,A,) of the eigen- o o o ,
vectors, and thus the analysis reduces to the study of two F=(1+iA)) KoEo/[1-AJA —|c'[*+i(AL+A))],
linearly coupled complex equations. Because of the complex )
nature of the field variables, it is convenient to consider the , . - . . ,
real and the imaginary parts of these equations for each Fl‘l\’hICh gommdes withF given by Eq.(4)_ for ¢'=0. Two
field. The most general solution of the perturbations is hencgth(?r eigenvalues remain a}lways negative. Note that the nor-
given by a linear superposition of terms of the form malized form ofF [Eq. (7)] implies that the linear coup!lng
s s S between the two components of the second harmonic field
[Re(Axy),Im(Axy) 1~ exdiq-r+Agt], where A(q) is the 1 jifies the instability threshold even whBy is resonant.
growth rate of the perturbations ands its transverse wave  To avoid cumbersome expressions, analytical results are
vector. derived in this section for the particular casg=y,=v,
Forc=c’=0, the linear stability analysis shows that the o = ay=a, andA,=A,=A(<0). In this case, the eigen-
trivial solution is stable fotF|<|F|, whereF is a normal-
ized pump intensity

F=KoEo/(1+iA)). 4) o=~ 1+ VIF[P—(A+algl?£c)?], ®

valueshlyz(d) become

where the plugminug sign corresponds ta; (\,). From
Eq. (8) we get the threshold of instability for perturbations

with an arbitrary wave vectodi:

For A=y A+ YyA,>0 the most unstable mode corre-
sponds to an homogeneous solutay=0. In this paper, we

focus on the cas& <0 for which the unstable modes at
threshold (F.|=1) correspond to transverse traveling waves

A Al =exdiq-r+\(g)t], whose two-dimensional wave
vector q lies on a circle centered at O with radiwg,  where the plugminus sign corresponds t6, (F,). There-

=V—2A/a, wherea= ya,+ yyay. For |F|>|F andA  fore, for c<—A the instability takes place at the critical

<0, anyg mode on the circle, and the opposite mode for thethreshold|FC|=1 and the unstable modes at threshold corre-

orthogonal component of the field, can be selected at thresﬁ—pond to transve[s_e travellr?g waves whose two-_dlm_ensmnal
old by means of spontaneous symmetry breaking. Hence, rgal wave vectollq lies on either of two concentric circles,
phase pattern appears above thresholdhfpandA, (travel- ~ centered at 0 with radiug, »:
ing wave$ with opposite wave vectors, while the intensity
remains homogeneous in both polarizatiof5,26. It
should be noted that when idler and signal fields are degen-
erate both in frequency and polarization, i.e., degenerate _ N )
type-1 (OPO (DOPO), Egs.(1) must be solved with the fur- In F!g. 2, we show the instability threshold for. perturbations
ther conditionA,=A, . In this case, standing waves statesOf different wave numbers. The threshdid=1 is the same
are selected at thresh(ﬂﬁ] The linear Coup"ng OAX with for CZO andC?&O, but forc#0 the |nstab||.|ty .takes place at
A, considered in this paper is expected to produce standingvo different wavevectors of modulus, ; indicated in the
waves for each polarization component also in a type-lifigure. Homogeneous perturbatiorgg<0) have a larger in-
OPO. stability threshold. The homogeneous phase-locked solutions
For c#0 the threshold for pattern formation remains atassociated with this threshold are discussed in the Appendix.
|F.|=1, but a main difference is that now the wave vectorsWe will not consider here the case>—A >0 for which at
of the most unstable modes lie on two concentric circles oF =1 only the modeg, becomes unstable. In this case the
different radii. This gives rise to a wave number competitionmodeq; =0 becomes unstable for larger values of the pump.

[F140)2=1+[A+a|q]?=c]?, 9

—A¥c

a

Qizz |d1,2|2: (10
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FIG. 2. Scaled threshold of instabilifyfor the trivial stationary
solution[Eq. (3)] as a function ofj? for the case of symmetric FH’s
coefficients. Soliddashed curve gives the threshold value Bffor
¢#0 (c=0). The critical thresholdlF =1 is indicated as a dotted
line. The instability takes place at two different wave vectors indi-
cated byqg, and g, (qo denotes the unstable wave vector for
=0). Parameters ar&,=1, A, ,=—0.8, A;’y=0, ay y=0.25,
ay,=0.125, ¢=0.4, andc’=0.01. The diamond indicates the
threshold of instability for homogeneous perturbatioﬁ; 0).

FIG. 4. Real part of the eigenvaluis , as a function oﬁ| for
the case of symmetric FH’s coefficients. The solid lines correspond
to F=1.06 and the dotted to criticalitf =F.=1. Left branches
correspond tov; and the right ones ta,. Herey, ,= y;yy=1 and
the values of the other parameters are the same as in Fig. 2. The
most unstable modes andq, correspond to the maximum of each
line. The level ReX, ;) =0 is also indicated as a dashed horizontal
line as a reference.

function of|q| for a case in whichF|=1.0019. The unstable
mode of smaller wave numbey; dominates in the linear
regime. The difference in growth rates fpr andq, depends

on the pumping level. For larger values of the pump, the
growth rates of both unstable modes are of the same order,
being the growth rate af; larger than the one af, [see Fig.

The values of the most unstable wave numligrandqs,
depend on the absolute value oas follows from Eq.(10)
(Fig. 3. In particular,q? , coincide withqj for c=0 and
vary linearly with |c|. The polarization coupling splits the
circle of unstable modes far=0 in two circles. The value of
c controls the magnitude of the split. We remark that d¢or
~|Al, |as|~0 and patterns with very large wavelengths can
be expected. FdiF|>|F| there is a band of unstable modes
associated with each eigenvalue. In Fig. 4, we show the real
part of the eigenvalues, , as a function otﬁ| for the criti- 0.001
cal case |F|=|F,=1) and for one case above threshold.
All the modes with ReX;,)>0 are linearly unstable. The

wave vectors with modulus),| or |q,| have the same maxi- 0.000f==========-- Ft-mmm----

mum growth ratex; {d; )=y (—1+|F|).
When the damping, detuning, or diffraction parameters

0.002

Re(A, ;)

for the signal and idler are different, the competing modes of —0.001 :
. 0 1 2 3
wave numbers|; andq, have different thresholds. It follows (a) lql
from the numerical analysis of E() that the smaller wave
numberg,; becomes first unstable & | = 1. In Fig. 5a), we 0.0100 ' '
show the growth rate for perturbations of the trivial state as a
0.0075 b
2.5
2.0F é 0.0050 i
' &
1.5¢ 0.0025 .
o
1.0t
0.0000 ) 1
] 7 2 3
0.5} (b) Igl
0-0 : : : FIG. 5. Growth rate of the unstable modes as a functidigjoi

0.0 02 04 06 038

el a case in which the FH’s coefficients are differeia). Near thresh-

old: F=1.0019(solid line) and F=1 (dotted ling. (b) Far from

FIG. 3. Wave number of the critical unstable modes as a functhreshold:F=1.02. Coefficients values ang¢,=1, A, ,=—0.8,

tion of [c[. The lower branch correspondsde and the upper one Ay, =0, y,=7,=0.9901, y,=7,=1.01, a,=0.2475, «,
to g,. Parameter values as in Fig. 2. =0.2525,a>'(’y=0.125,C=0.4, andc’=0.01.
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5(b)]. In the following section, we show that this fact deeply
affects the nonlinear mode competition dynamics of the sys-
tem.
We finally note that for asymmetric FH's coefficients, the
critical modes have in general real eigenvalugs., (a)
|m(7\1,z((31,2))=0]- However, for very small values af i.e.,
when |g,|~|q,|, there is a small interval of values of the
external pumpF, which includes the critical valué =1,
where Inﬂ()\lyz(ﬁlz))io. In this limit of c—0, the instabil-

ity becomes convective, similarly to a situation considered in
Ref.[33]. (b)

B. Critical modes

Next we consider some features of the early time dynam-
ics of pattern formation that can be understood in terms of
the eigenvectors corresponding to the eigenvalues of the lin- (c)
earized problem discussed above. First, we introduce the far
field as the Fourier transform of the near field, where the near
field is the transverse field configuration at the input/output

cavity mirror. The far-field componenisqg(t) of A, (for ex-
ample are defined by

(d)

- 1 (= . .-
Ax(r,t)=ﬁf_ Ag(t) explig-r) dayday . (11

FIG. 6. A snapshot at=900 of the FH'’s fields spontaneously
In Fig. 6, we show numerical resulf84] for a typical  generated from random initial conditions close to the trivial steady

transverse profile of th, andA, FH fields at an early time  state given by Eq(3). (a) Left: near field|A,|; right: far field|A].
after the pump is increased beyond its threshold value. Thesg) A _field. Left: Red,); right: Im(A). (¢) A, field. Left: Im(A,);
results correspond to the case of symmetric coefficients ifight: Re(a,). (d) Absolute value of the Fourier transform. Left:
which two competing wave numbers have the same growtiRe(A,). Right: Im(A,). Parameters ar€=1.16, Ko=1, A, =
rate. In Fig. 6a), we show the near field of the signal inten- —0.8, A} =0, y,,=v,,=1, ay,=0.25, a;,=0.125,c=0.4,
sity pattern and its far field. The two concentric rings of theandc’=0.01.

far field correspond to unstable wave vectgnsith arbitrary
orientation and a wave number aroupd(inner ring andq,

(outer ring. The near field is the result of the interferencein the idler field Ay, but real and imaginary parts have a
among all the unstable modes of both rings in the far field gifferent wavelength than foA,. In fact we observe that

However, the interference takes place in such a way that thRe(Ax):lm(Ay) while Im(A)=Re(A,). In Fig. &d), we

real part ofA, is associated with the unstable modes of theg o the far fields of R&,) and Im@,). This gives evi-
X X/

outer ring, while its imaginary part is associated with thedence of the different wave number associated withARe(

unstable modes of the inner ring. In addition, there is a hig . : .
correlation between the transverse structures observed in t%g d Im@A,). The two rings in the far fields of Ré() and

signalA and idlerA, fields. This is illustrated in Figs.(8)— 'T(FA.Q correspond, respectively, to the outer and inner rings
6(d). In Figs. &b) and 6c), we show the near field of the real of Fig. &a). . . .

and imaginary parts ok, andA, . Itis observed that the real These numerlgal facts_can b? explalr_1ed n terms_ of the
and imaginary parts of the field, support transverse pat- €igenvectors\; X(q) associated with the eigenvalugs in-
terns with different wavelengths. The same fact is observe#foduced in Eq(8). They can be written as

[Re(A,),IM(A,),Re(A)),IM(A))]"=A1(q) = Cyl 3,1,1~ k1] expliq-r)

Ax(Q)=Co[1,— kp,k5,1] T expliq-r), (12)
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FIG. 7. Amplitudes«; , (solid line) as a function ofq|. The real —axro__ 1 ' ' '
part of the critical eigenvalues, , (dotted line$ and the zero level  (a) - - - . ' g s
(dashed lingare also plotted as reference. H&re 1 and the val-
ues of the other parameters are the same as Fig. 4. 6x10~6 : : T T T
where we have introduced 4x1076- 7
—N+F-—1 2x1076 .
Kle—»Z, N L
+a |q| +cC % , M {
—NptF-1 oL
Ky= — ) (13) -2x10
A+algl—c -
—ax70” 6 -
and the normalization constant§f1= V2 (1+|Kj|2),j .
=1,2. For simplicity here we takie to be real(i.e., resonant —6*10‘63 — . 1 L .
! ) - N N p
pump field. Exactly at threshold; , vanishes for the cor- ~ ®) o

responding critical wave vectar; gy ) =0. The generall FIG. 8. Atypical result for a cut of the far-fieldFF) amplitude
dependence of;, on the wave number at threshold is A-(1) along the linea. 0 for theA. field during the transient stat
shown in Fig. 7. At thresholdy =F.=1 and the eigenvec- q(t) along the inegy =1 Tor theA, Tield during the transient state.
- - -~ - (a) Real part;(b) imaginary part. Parameters dfe=1.06, Ky=1,
tors A1 (q) are damped for anyg exceptA,;(q=q;) and Ay=—08, AL,=0, »=7=09901, y,=y,=101 a,

Ap(q=0p): =0.2475,a,=0.2525, a}, ,=0.125,c=0.4, andc’ =0.01.
- 1 s - function for ﬁ=ﬁ and an even function foﬁ=ﬁ (even
A =—[0,1,1,0" T, : R _ Sl _
() \/E[ G exptiar-r) function for g=q; and an odd function foq=q,). This
property implies that
- 1 .o ~ ~
Az(Qz)zE[]-,O,O,]-]TGXWQZ"), (14) Ag=—Ag.
which are marginalzero growth rateand define the direc- K,52=K32. (15

tion in the functional space along which the instability takes

place. I'I'fhed_formF_of gheheigenvtra]ctof%) expl:;ins cr’]urI,”U' Given that in the linear regime at threshold only excitations
merical finding(Fig. 6 that at short imes, when the linear . o0 vectorgy, or g, contribute to the resulting struc-

approximation to the dynamics remains valid, the com- : i . )
ponents of the FH's fields [Re(Ay),Im(A,)] and tures in the real-valued fields R&() or Im(A,), respec

[Im(A,),Re(Ay)] only sustain patterns with a wave vector of Fvely, we find th_at the basic excitations for Rg) and
- - _ _ _ m(A,) are standing waves of the form
modulus|q,| or |q,|, respectively. As we discuss in the fol-
lowing section, this gives rise to pattern formation with com-
peting wavelengths that can be rather different.

There is an interesting symmetry in the far-field compo- 5 L o
nents of the first harmonics fields. We focus in #hefield, iIm(AX)~Aa1 exp(iqy - r)ﬂLA,,i1 exp(—igs-r). (16
but the discussion is also valid féx, . Our numerical results
indicate, as shown, for example, in Fig. 8, that the realrhese standing waves are the interference between two op-
(imaginary part of the far-field componer;(t) is an odd  posite modes of the same ring of the far field that satisfy Eq.

Re(A)~Ag, explidy 1) +A_g, exp—id,-r),
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(a)

(b)

(c)

(d) (d)

FIG. 9. Snapshots as in Fig. 6 at tirre 7800. Parameters are FIG. 10. Snapshots as in Fig. 6 at tirtre 42 800. Parameters

the same as Fig. 6. are the same as Fig. 6.

(15). Both modes have the same amplitude, but the global IV. TRANSVERSE INTENSITY PATTERNS

phase.of the superposition of the two modes is different in | this section, we give a numerical descript[@4] of the
each ring. patterns that are asymptotically selected after a regime of

It is interesting to note that the circularly polarized com-nonlinear competition among the unstable modes of wave
ponentsA.. of the vectorial FH field give a natural descrip- numbersy; andg,. A theoretical justification of these results
tion of the instability. We have already discussed that, ais given in the following section in terms of an amplitude
threshold, Ref,)=Im(A,) and Im(A,)=Re(A,), so that equation. We consider separately the cases of symmetric and
A+=(AX+iAy)/\/§=i 2Im(A,) and A,=(AX—iAy)/\/§ nonsymmetric coefficients for the FH fields.
=2 Re(A,). Therefore, it follows from Eq(16) that the
instability for A, (A_) takes place atj; (qz). The two A. Symmetric coefficients
circularly polarized components will emerge at the instability o o .
as standing waves intensity patterns of different wave num- W?hen t?’x— ?)tlh_eyr’nocsy'?_r@c;b(ré rr?ggeéxn_tﬁé; Ao’ c'trt::?es of
bers. In fact, for symmetric coefficients and in the linearizedd'OWth rates o u ! wo cl

; o . radii g, and g, are equal, and the instability takes place at
version of Eqs(1) around the trivial solutiof3), A, andA._ both circles simultaneousiisee Fig. 4. In this case the non-

are depoupled. They are nonlinearly coupled through th?lnear competition keeps wave vectors in both circles in the
pump fieldB, . o far field excited for long times. The real and imaginary parts
Our above discussion is for real values of the parameter o« e FH fields show patterns with different wavelengths, as
Whencis complex €+0), both the real and imaginary parts giscyssed in Sec. IIl. To illustrate the dynamical evolution,
of A, andA, have contributions of unstable modes of waveye show in Figs. 9 and 10 snapshots of the pattern configu-
numbersq; and d,. Therefore, we observe transverse pat-ration at two different times. The two rings in the far field
terns with competing wavelengths in the real and the imagipersist at long times. The pattern that appears in the long-
nary parts o, , . However, by changing the global phase of time dynamics presents domains in which real and imaginary
the FH fields, the problem can be considered in terms of parts of each of the FH near fields show standing waves of
real, as previously pointed out. arbitrary orientation and of different wavelengths for the real
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(b)

(a)
(0)

\Na “
FIG. 11. A snapshot at time=3000 of the fieldA, spontane-

ously generated from random initial conditions for a case in which

the modeﬁ=0 is one of the most unstable modés), (b), (c) and

(d) show, respectively, the intensity, far field, real part and imagi-

nary part of the signal field. liic) and (d) patterns with very dif- ( d)

ferent wavelength can be appreciated. Parameter valued- are

=1.08, Ko=1, A,,=—06, A} =0, =n%n=r=r=1, a

=a,=0.25,¢=0.6 andc’=0.01.

FIG. 12. Snapshots as in Fig. 6 at timme 100. Parameter values

and imaginary parts. The arbitrary orientation of these standare Eo=1.002, Ko=1, A, ,=-0.8, A}, =0, ¥,=7,=0.9901,
ing waves comes from the spontaneous choice of two oppa¥ = ¥y=1.01, ay=0.2475,a,=0.2525,a; ,=0.125,c=0.4, and
site wave vectors in the corresponding ring of the far field ¢ =0-01.

Thus, the general picture is that there is long time competi-

tion among standing waves of different orientations and two o ) )
different wave numbers. Sec. Il and which is represented here by Fig. 12, there is a

A limiting situation is the case in which the inner ring Nonlinear competition between the two circles of unstable
collapses to the poird=0. This situation takes place when Medes at intermediate times. This is shown in Fig. 13 where
b poirg P the far fields of Re,) and Im(A) are seen to have com-

c=|A,]. In this case, the growth of uniform domains occurs . > . g
in one of the components of the FH vector field while thePeting pontnbgﬂons from the_ two circles. A.t late times ;he
ner circle wins the competition and the final pattern is a

other component sustains standing waves of local arbitrar tandi ‘ bar both for A andA.. Thi

orientation, as shown in Fig. 11. This structure represents anding wave of wave numbgp both TorA, andA . This

case in which patterns and uniform domains coexist in th onlinear wave number selection can be traced back to the
behavior of the growth rate, as shown in the following sec-

same complex field as an effect induced by the direct polar: i ) .
tion. For long times there is also a spontaneous breaking of

ization coupling. This situation takes place near signal resoth tational i d a standi . bit
nance for very small values af e rotational symmetry and a standing wave in an arbitrary

direction is selected, as shown in Fig. 14. The real and imagi-
nary parts of the FH fields show, in this case, patterns with
the same wavelengths. The resulting structures originate in
When the damping, diffraction, or detuning coefficients ofthe interference between two arbitrary, but opposite, wave
the signal and idler are different, the nonlinear mode compevectors of the inner circle. The resulting stripe intensity pat-
tition depends very much on how far above threshold theern is similar to that predicted for type-1 DOPO in the sense
OPO is pumped. Near threshold, the relative difference in théhat it is the interference between two opposite traveling
magnitude of the growth rate of the unstable modes on thevaves[6]. However, physically, the energy and momentum
circles of wave numberg; andq, is important, as follows conservation in the parametric down-conversion of pump
from Fig. 5a). This fact produces a strong change in thephotons only implies off-axis emission of idler and signal
dynamics of the system. In Figs. 12, 13, and 14, we showphotons along two opposite directions without interference
shapshots of configurations at different times of the dynamibetween them because they have orthogonal polarization.
cal evolution. After a transient linear regime, discussed irDue to polarization coupling, pure traveling waves are not

B. Nonsymmetric coefficients
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(a)

(d)

FIG. 13. Snapshots as in Fig. 12 at time3200. FIG. 14. Snapshots as in Fig. 12 at tifne17 600.

solutions of Eqgs.1). The \/4 plate provides a mixing of
polarization that allows the photons of the same FH field to
interfere, producing a standing wave. This phenomenon is
the same one that occurs in resonantly coupled complex
Ginzburg-Landau equatiori85,36: the linear(polarization
coupling allows the formation of standing waves as the result
of the interaction between opposite modes in the far field, in
this case, the inner ring.

Far from threshold, the growth rates of the unstable
modesq, andq, are of the same ord¢see Fig. B)] and the
dynamics of the system in this regime is equivalent to the
symmetric case, as we prove in the following section. There-
fore, in the asymmetric case the intensity of the external
pump can be used to stabilize both rings of the far field
which have a competing coexistence for long times and far
from threshold. In Fig. 15, we show a typical long-time state
for this regime.

V. AMPLITUDE EQUATIONS

Close to the instability threshold and using the general
methods of nonlinear dynamics and pattern formation theory, F|G. 15. A snapshot at time=50 500 of the fieldA, spontane-
one may derive amplitude equations for the patterns degusly generated from random initial conditions close to the trivial
scribed numerically in the preceding section. It is now wellsteady state in the asymmetric ca&®. (b), (c), and(d) show the
known that equations are able to describe pattern evolutionntensity, far field, real part and imaginary partAf, respectively.
selection, and stability. In particular, if, for simplicity, one Parameters are as in Fig. 12 excEpt 1.06.
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considers only the critical modes identified in Sec. lll, field variables may by expressed as
[Re(A,),Im(A,),Re(Ay),Im(A))]"=A;[0,1,1,0" exp(idy- ) +A_1[0,1,1,07 exp(~id-1) (17

whereA;(t) are slowly evolving amplitudes associated with the modes with wave vépt@iven the relation$l5), we have
chosen here to define the amplitudes; andA., asA. g =iA.; andA.5 =A.,.
Standard analysif2] leads to the following evolution equations for the symmetric ca8g<©, andc’'=A;=0 for

simplicity):
Ko S LB S B ; S B ; S _B* R
0A=1=Y([FI=DAc1+ 5 [Acy Bt BY ot Ay (Bt BY) oo, +1A0 (B BY)2g 6, T 1A 2 (BBl g 46,

Ko L L N L
atAtZZ7(|F|_1)At2+7[At2(BX+B:)0+A12(Bx+B:)t2d2+|Al(Bx_B:)tdz—dl+|A—l(BX_B:):61+62]:
(18)

where where
H(Bog=—(1+ia' ) (BYg+2iKo(AAY G, (19 712=2[1+(4a’ 91))°].

wherea' =a} and (--); indicates Fourier transform. Using SinceA_;=A7 andA_,=A3 , as follows from Eq(15) and
Eq. (19) and time scales separation near threshold 1  the definition of the amplitude. ; andA. , after Eq.(17),

<1) one may write B,);=B; as an expansion in the ampli- °"¢ MaYy finally write

tudesA, . One has, at lowest order, _
' GAL=Y(|F[= 1A= 4KG AL [(1+ n) A +]AS]%],

Bo=—4Ky (A{A_{+AA_,),
0= ~ Ko (AA-1+AA-2) GePo=y(|F|~ 1)As— K2 Ag [ (1+ 1) | A2+ Agl2].

 2KeAL A (22
B.og =~ 1+4ia’ g2’ These equations describe a weak competition between the
' amplitudesA; andA,, so that the stable steady states of the
B.: .-=0 (20) system are given by
T0*0qq .
This leads to 1A [2= 72 y([F[—1)
- 5 mt ety 4K3
dAL1=y(|F|—1)AL1—4KoAL 1Az —4KGA L AA
—4mKeAz 1AL, e YIFI=D 23

mtmtmn.  4K3
IA 2= Y(IF| = 1) AL~ 4KEAZ JA L, — 4KEA L LAA_
5 5 These expressions are still valid whan andc’ are differ-
—4n,KoA AL, (2D ent from zero, withy, , given by

1 1+c'?+ (A" +4a’ qf)°
T2 (14 (c'+A +da’ G2 [1+(c —A' —4a’ ¢2p)7)

(29)

The asymptotic states of the dynamics, EG8), correspond to patterns built on two wave vec'@fsandﬁz, as confirmed by
the numerical results of the preceding section. However, when the kinetic coefficiengéndy field components are slightly
different (@,# ®y,|®x—®y|<®x+ 0y), the growth rates\, , of critical modes become differerisee Fig. $ and the
amplitude Eqs(22) become

GAL =N 1A — 4K AL (| A2+ |Ag]D) — 47 KE AL A2,
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O A= )\2A2—4K§ A, (| A2+ A% — 47;2KSA2 |A,|?, !ntensity pattern with the same wavel_eng;h for t_he signal and
(25)  idler. Far from threshold, the dynamics is equivalent to the
symmetric case so that the strength of the external pump can

where \;>X\,. In this case, patterns with wave vectgy be used to stabilize the two competing wavelengths. Ampli-

only develop at, and slightly beyond, threshold. The correfude equations for the vectoriatritical) modes have been
sponding steady state is d.erlvedl and they conﬂrm our numerical observations. In par-
ticular, it is worth noting that the structure of these equations
N reflects the vectorial nature of the fields, which introduces
! |A,|=0. (26) nontrivial couplings between the modes.

AP =———,
4K3(1+ 7y)
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|A |2 N (I+75)— N, APPENDIX: UNIFORM PHASE-LOCKED SOLUTIONS
1l = )
4KE( 71+ mot 1172) In addition to the trivial uniform solution given by Eq.
(3), Egs. (1) have other uniform stationary solutions for
, No (14 71) =N\ Ay/Ay>0 considered in Ref.24]. These are the dominant
|Ag|*= (27) solutions when transverse effects are not taken into account.

5 .
A1t 72 1m1772) For the sake of completeness, a brief description of these

solutions forA, <0 is given here. Equationd) admit for
r@ixvy: ay,y expley,) two uniform stationary solutions, which
e the form

The two types of behavidiclose and far from threshold
have been described in our numerical results in the precedi
section. Furthermore, on increasing pumping beyond thresHe

old, one observes a crossover between monomode patterns, 1-T2

with wave vectors corresponding to the maximum growth cod gt &)= m

rate, and bimodal patterns. For growth rates given by(&yq.

transition between monomodal and bimodal patterns occurs (A+T Ay)—2]c| T sin(¢pg+ &)

for small anisotropies [[(Ax—Ay)/(Ax+Ay)|[<1,|(ay cog @) = y2 KoEqc ,
P

—ay)/(ax+ ay)|<1] at
_2¢pE,T Sin( ¢pg) —1—T'2

2+ 7, |axAx_ a'yAy| aﬁ
= 2 !
|F| 1+ 27]2 ) \/Kay . (28) 4Cpr

a,=I"a,, (A1)

VI CONCLUSION where T?=A, /A, c,=1/(1—|c'|?), and ¢ s= by by .

In conclusion, we have shown that standing wave intenThe existence of these solutions requires Fot 1 that|c|
sity patterns can be generated in type-1l optical parametric-|1—1I'?|/(2I'). This relation defines a circle in the com-
oscillators. They appear spontaneously in the transversglex plane ofc, inside which no stationary uniform solutions
plane when there is a direct polarization coupling betweerexist.
the signal and idler fields, produced for example, by an int- The first of Eqgs.(Al) indicates that these homogeneous
racavity quarter wave plate. Such a coupling also gives rissolutions are self-phase-locked. Due to the fact that the func-
to two competing wavelengths in the system. tion arccos is a multivalued function in the range m, 7],

In the transient dynamical regime after the pump istwo branches of uniform phase-locked solutions exist. Each
switched on above its threshold value; there is a competitioranch has a different threshold. Uniform solutions are never
between two rings of unstable modes. This gives rise t®pontaneously observed fdr, ,<0 because they have a
transverse patterns with different wavelengths for the realarger threshold of instability than the solution with a finite
and imaginary parts of the FH'’s fields. We have describedvave number. The threshold of the uniform branch with a
two dynamical regimes. In the first one, which corresponddower threshold is indicated by a diamond in Fig. 2. Note that
to symmetric FH's parameters, the far field is composed ofhis is larger than the threshold for pattern formatién|
two concentric rings. The real and imaginary parts of each o=1. The second branch of uniform solutions, with a larger
the FH's fields show patterns with different wavelengths. Forthreshold value, is unstable, and it is not observed, not even
asymmetric FH’s coefficients, the dynamical regime dependfor positive FH's detunings where uniform solutions domi-
on the distance from the threshold. Near threshold, the dyrate and domain walls between them have been reported
namical process of pattern competition leads to the domif27,28. The homogeneous solutions described here are dif-
nance of a unique wavelength, selecting a transverse strifferent from those in Fig. 11, obtained in the limit gf=0.
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