157 research outputs found

    Molecular Dynamics Study of Crystal Plasticity during Nanoindentation in Ni Nanowires

    Get PDF
    Molecular dynamics simulations were performed to gain fundamental insight into crystal plasticity, and its size effects in nanowires deformed by spherical indentation. This work focused on-oriented single-crystal, defect-free Ni nanowires of cylindrical shape with diameters of 12 and 30 nm. The indentation of thin films was also comparatively studied to characterize the influence of free surfaces in the emission and absorption of lattice dislocations in single-crystal Ni. All of the simulations were conducted at 300 K by using a virtual spherical indenter of 18 nm in diameter with a displacement rate of1 ms1. No significant effect of sample size was observed on the elastic response and mean contact pressure at yield point in both thin films and nanowires. In the plastic regime, a constant hardness of 21 GPa was found in thin films for penetration depths larger than 0.8 nm, irrespective of variations in film thickness. The major finding of this work is that the hardness of the nanowires decreases as the sample diameter decreases, causing important softening effects in the smaller nanowire during indentation. The interactions of prismatic loops and dislocations, which are emitted beneath the contact tip, with free boundaries are shown to be the main factor for the size dependence of hardness in single-crystal Ni nanowires during indentation

    Nanoindentation and Plasticity in Nanocrystalline NI Nanowires: A Case Study in Size Effect Mitigation

    Get PDF
    We examine the processes of spherical indentation and tension in Ni nanowires and thin films containing random distributions of nanoscale grains by molecular dynamics simulations. It is shown that the resistance to nanoindentation of nanocrystalline Ni nanowires with diameters of 12 and 30 nm tends not to depend on the wire diameter and free surfaces, contrary to nanoindentation in single-crystalline nanowires. Accommodation of plastic deformation by grain boundary sliding suggests a mitigation strategy for sample boundary effects in nanoscale plasticity

    Grain Growth Behavior at Absolute Zero during Nanocrystalline Metal Indentation

    Get PDF
    The authors show using atomistic simulations that stress-driven grain growth can be obtained in the athermal limit during nanocrystalline aluminum indentation. They find that the grain growth results from rotation of nanograins and propagation of shear bands. Together, these mechanisms are shown to lead to the unstable migration of grain boundaries via process of coupled motion. An analytical model is used to explain this behavior based on the atomic-level shear stress acting on the interfaces during the shear band propagation. This study sheds light on the atomic mechanism at play during the abnormal grain coarsening observed at low temperature in nanocrystalline metal

    Development of a semi-empirical potential for simulation of Ni solute segregation into grain boundaries in Ag

    Get PDF
    An Ag–Ni semi-empirical potential was developed to simulate the segregation of Ni solutes at Ag grain boundaries (GBs). The potential combines a new Ag potential fitted to correctly reproduce the stable and unstable stacking fault energies in this metal and the existing Ni potential from Mendelev et al (2012 Phil. Mag. 92 4454–69). The Ag–Ni cross potential functions were fitted to ab initio data on the liquid structure of the Ag80Ni20 alloy to properly incorporate the Ag–Ni interaction at small atomic separations, and to the Ni segregation energies at different sites within a high-energy Σ9 (221) symmetric tilt GB. By deploying this potential with hybrid Monte Carlo/molecular dynamics simulations, it was found that heterogeneous segregation and clustering of Ni atoms at GBs and twin boundary defects occur at low Ni concentrations, 1 and 2 at%. This behavior is profoundly different from the homogeneous interfacial dispersion generally observed for the Cu segregation in Ag. A GB transformation to amorphous intergranular films was found to prevail at higher Ni concentrations (10 at%). The developed potential opens new opportunities for studying the selective segregation behavior of Ni solutes in interface-hardened Ag metals and its effect on plasticity

    Grain boundary energies and cohesive strength as a function of geometry

    Full text link
    Cohesive laws are stress-strain curves used in finite element calculations to describe the debonding of interfaces such as grain boundaries. It would be convenient to describe grain boundary cohesive laws as a function of the parameters needed to describe the grain boundary geometry; two parameters in 2D and 5 parameters in 3D. However, we find that the cohesive law is not a smooth function of these parameters. In fact, it is discontinuous at geometries for which the two grains have repeat distances that are rational with respect to one another. Using atomistic simulations, we extract grain boundary energies and cohesive laws of grain boundary fracture in 2D with a Lennard-Jones potential for all possible geometries which can be simulated within periodic boundary conditions with a maximum box size. We introduce a model where grain boundaries are represented as high symmetry boundaries decorated by extra dislocations. Using it, we develop a functional form for the symmetric grain boundary energies, which have cusps at all high symmetry angles. We also find the asymptotic form of the fracture toughness near the discontinuities at high symmetry grain boundaries using our dislocation decoration model.Comment: 12 pages, 19 figures, changed titl

    Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals

    Get PDF
    Strengthening of metals through nanoscale grain boundaries and coherent twin boundaries is manifested by a maximum strength—a phenomenon known as Hall–Petch breakdown. Different softening mechanisms are considered to occur for nanocrystalline and nanotwinned materials. Here, we report nanocrystalline-nanotwinned Ag materials that exhibit two strength transitions dissimilar from the above mechanisms. Atomistic simulations show three distinct strength regions as twin spacing decreases, delineated by positive Hall–Petch strengthening to grain-boundary-dictated (near-zero Hall–Petch slope) mechanisms and to softening (negative Hall–Petch slope) induced by twin-boundary defects. An ideal maximum strength is reached for a range of twin spacings below 7 nm. We synthesized nanocrystalline-nanotwinned Ag with hardness 3.05 GPa—42% higher than the current record, by segregating trace concentrations of Cu impurity (\u3c1.0 weight (wt)%). The microalloy retains excellent electrical conductivity and remains stable up to 653 K; 215 K better than for pure nanotwinned Ag. This breaks the existing trade-off between strength and electrical conductivity, and demonstrates the potential for creating interface-dominated materials with unprecedented mechanical and physical properties

    Coupled structural and magnetic properties of ferric fluoride nanostructures part I: a Metropolis atomistic study

    Full text link
    A modified Metropolis atomistic simulation is proposed to model the structure of grain boundaries (GBs) and interfaces in ionic nanostructured systems and is applied to the magnetically interesting case of iron trifluoride (FeF3). We chose long-range interatomic potentials adjusted on experimental results, and adapted a previously established Monte Carlo scheme consisting of various modifications of the simulated annealing/ Metropolis algorithm. Atomic structures of twisted and tilted GBs as a function of the relative disorientation of the grains have been achieved yielding close to experimentally measured properties. This approach takes into account the structure of the grains far from the interface in order to constrain the relative orientation of the grains, without any periodic boundary conditions. One concludes that a long-range coulombic falloff of the interatomic potentials is necessary to obtain GB structures presenting a correct local topology but with a smooth transition from crystalline to amorphous states. The structural features are finally discussed in terms of topological aspects and local magnetic structure.Comment: submitted to JMM

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures
    corecore