14 research outputs found

    Mucosomes: Intrinsically Mucoadhesive Glycosylated Mucin Nanoparticles as Multi-Drug Delivery Platform

    Get PDF
    Mucus is a complex barrier for pharmacological treatments and overcoming it is one of the major challenges faced during transmucosal drug delivery. To tackle this issue, a novel class of glycosylated nanoparticles, named "mucosomes," which are based on the most important protein constituting mucus, the mucin, is introduced. Mucosomes are designed to improve drug absorption and residence time on the mucosal tissues. Mucosomes are produced (150-300 nm), functionalized with glycans, and loaded with the desired drug in a single one-pot synthetic process and, with this method, a wide range of small and macro molecules can be loaded with different physicochemical properties. Various in vitro models are used to test the mucoadhesive properties of mucosomes. The presence of functional glycans is indicated by the interaction with lectins. Mucosomes are proven to be storable at 4 degrees C after lyophilization, and administration through a nasal spray does not modify the morphology of the mucosomes. In vitro and in vivo tests indicate mucosomes do not induce adverse effects under the investigated conditions. This study proposes mucosomes as a ground-breaking nanosystem that can be applied in several pathological contexts, especially in mucus-related disorders

    Quatsomes Loaded with Squaraine Dye as an Effective Photosensitizer for Photodynamic Therapy

    Get PDF
    Photodynamic therapy is a non-invasive therapeutic strategy that combines external light with a photosensitizer (PS) to destroy abnormal cells. Despite the great progress in the development of new photosensitizers with improved efficacy, the PS’s photosensitivity, high hydrophobicity, and tumor target avidity still represent the main challenges. Herein, newly synthesized brominated squaraine, exhibiting intense absorption in the red/near-infrared region, has been successfully incorporated into Quatsome (QS) nanovesicles at different loadings. The formulations under study have been characterized and interrogated in vitro for cytotoxicity, cellular uptake, and PDT efficiency in a breast cancer cell line. The nanoencapsulation of brominated squaraine into QS overcomes the non-water solubility limitation of the brominated squaraine without compromising its ability to generate ROS rapidly. In addition, PDT effectiveness is maximized due to the highly localized PS loadings in the QS. This strategy allows using a therapeutic squaraine concentration that is 100 times lower than the concentration of free squaraine usually employed in PDT. Taken together, our results reveal the benefits of the incorporation of brominated squaraine into QS to optimize their photoactive properties and support their applicability as photosensitizer agents for PDT

    Clinical Features, Cardiovascular Risk Profile, and Therapeutic Trajectories of Patients with Type 2 Diabetes Candidate for Oral Semaglutide Therapy in the Italian Specialist Care

    Get PDF
    Introduction: This study aimed to address therapeutic inertia in the management of type 2 diabetes (T2D) by investigating the potential of early treatment with oral semaglutide. Methods: A cross-sectional survey was conducted between October 2021 and April 2022 among specialists treating individuals with T2D. A scientific committee designed a data collection form covering demographics, cardiovascular risk, glucose control metrics, ongoing therapies, and physician judgments on treatment appropriateness. Participants completed anonymous patient questionnaires reflecting routine clinical encounters. The preferred therapeutic regimen for each patient was also identified. Results: The analysis was conducted on 4449 patients initiating oral semaglutide. The population had a relatively short disease duration (42%  60% of patients, and more often than sitagliptin or empagliflozin. Conclusion: The study supports the potential of early implementation of oral semaglutide as a strategy to overcome therapeutic inertia and enhance T2D management

    The hypometabolic state: a good predictor of a better prognosis in amyotrophic lateral sclerosis

    No full text
    International audienceBackground Malnutrition and weight loss are negative prognostic factors for survival in patients with amyotrophic lateral sclerosis (ALS). However, energy expenditure at rest (REE) is still not included in clinical practice, and no data are available concerning hypometabolic state in ALS. Objective To evaluate in a referral cohort of patients with ALS the prevalence of hypometabolic state as compared with normometabolic and hypermetabolic states, and to correlate it with clinical phenotype, rate of progression and survival. Design We conducted a retrospective study examining REE measured by indirect calorimetry in patients with ALS referred to Milan, Limoges and Tours referral centres between January 2011 and December 2017. Hypometabolism and hypermetabolism states were defined when REE difference between measured and predictive values was ≤−10% and ≥10%, respectively. We evaluated the relationship between these metabolic alterations and measures of body composition, clinical characteristics and survival. Results Eight hundred forty-seven patients with ALS were recruited. The median age at onset was 63.79 years (IQR 55.00–71.17). The male/female ratio was 1.26 (M/F: 472/375). Ten per cent of patients with ALS were hypometabolic whereas 40% were hypermetabolic. Hypometabolism was significantly associated with later need for gastrostomy, non-invasive ventilation and tracheostomy placement. Furthermore, hypometabolic patients with ALS significantly outlived normometabolic (HR=1.901 (95% CI 1.080 to 3.345), p=0.0259) and hypermetabolic (HR=2.138 (95% CI 1.154 to 3.958), p=0.0157) patients. Conclusion Hypometabolism in ALS is not uncommon and is associated with slower disease progression and better survival than normometabolic and hypermetabolic subjects. Indirect calorimetry should be performed at least at time of diagnosis because alterations in metabolism are correlated with prognosis

    A Context-Aware Multimedia Recommender System for activities planning in mobile environments

    No full text
    Exploring new applications and services for mobile environments has generated considerable excitement among both commercial companies and academics. In this paper we propose a context-aware recommender system that accommodates user’s needs with location-dependent multimedia information available in a mobile environment related to an indoor scenario. Specifically, we propose a recommender system for the planning of browsing activities that are based on objects features, users behaviours and on the current context which state is captured by apposite sensor networks. We present the features of such a system and discuss the proposed approach

    A Context-Aware Multimedia Recommender System for activities planning in mobile environments

    No full text
    Exploring new applications and services for mobile environments has generated considerable excitement among both commercial companies and academics. In this paper we propose a context-aware recommender system that accommodates user’s needs with location-dependent multimedia information available in a mobile environment related to an indoor scenario. Specifically, we propose a recommender system for the planning of browsing activities that are based on objects features, users behaviours and on the current context which state is captured by apposite sensor networks. We present the features of such a system and discuss the proposed approach
    corecore