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Abstract 

Indoor Air Quality assessment  is an  emerging application field for chemical sensing due to raising concerns 
about indoor VOC pollution levels. Local and distributed  assessment of chemicals concentrations is also significant 
for safety (gas spills detection, pollution monitoring) and security applications as well as for  HVAC automation for 
energy efficiency. Mobile robot based and wireless sensor network based approaches are under investigation for 
providing efficient solutions. Here, we report  results obtained by a network of wireless intelligent electronic noses 
in a semi-controlled environment for the detection  of  pollutants in complex mixtures . The w-noses are equipped 
with local discrimination and quantification capabilities sustained  by trained artificial neural networks overcoming 
interferents issues. 3D chemicals concentration reconstruction is obtained by a sensor fusion algorithm at datasink 
on the basis of the w-noses responses.  
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1. Introduction 

The capability to detect and quantify chemicals concentration in 3D environments as well as locating possible gas 
spills, is becoming more and more interesting for the growing concerns about indoor environments safety and 
security.Just as an example, VOCs concentrations are frequently much higher in indoor environment like small 
offices and houses than outdoor due to degassing form furniture adhesives, special cleaning agents  or cigarettes 
smoke. Unforunately, many of them (e.g. formaldehyde) are known to pose serious threats to humans health ranging 
from headaches to cancer.  Chemical signal propagation characteristics make the use of the common single 
measurement point architecture mostly ineffective.  Actually, the propagation of chemical plumes in real 
environments is primary subdued to complex fluid dynamics effects while diffusion effects appear to be negligible 
in most circumstances. We proposed to  investigate the use of a mesh of wireless e-noses for quantitative indoor air 
quality assessment addressing architectural, power and on-board intelligence issues [1]. The proposed architecture 
could be applied to safety scenarios like spills detection (e.g. hydrogen spills in hydrogen refills stations). Authors 
like Diamond et al. have tackled the wireless chemical sensing scenario demonstrating the capability of detection of  
single sensor platforms in single chemical detection tests [2]. On the other hand, Liliental et al. pursued a mobile 
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multi sensor robot approach  addressing particularly the 3D source declaration problem [3].  Here, we investigate the 
possibility for on-board discrimination and quantification as well as 3D reconstruction of chemicals concentration 
maps for gas mixtures. In facts, in this study we pursue the 3D gas concentration mapping of  acetic acid – ethanol 
mixtures (as VOC pollutant simulants) in ambient air by a mesh of wireless electronic noses coupled with a sensor 
fusion algorithm. Parameters tuning is also addressed with a cross validation approach.  

2. Experimental and Methods 

 A set of 4 w-noses, each one  relying on 4 MOX sensors array was developed using  Figaro 2602, 2600, 2x2620  
sensors. The sensors array have  been assembled on a signal conditioning board and connected to a commercially 
available WSN platform (Crossbow TelosB mote) and then integrated in a compact plastic case for free gas flow 
operation. The TelosB mote is a TinyOS compliant platform equipped with a TI-MSP4300 low power μcontroller,  a  
CC2420 zigbee capable  radio and Hamamatsu digital T/RH sensors, it provide several A/D and D/A as well as 
digital I/O lines for sensors and peripheral connections. In order to ensure to ensure data acquisition, local 
processing and transmission capabilities, ad-hoc software components have been designed and developed in NESC, 
a component based, TinyOS supported, dialect of the C language. Standard routing mechanisms provided by 
TinyOS RTS have been also integrated in order to deploy a mesh topology w-nose network. At the data sink, a java 
based component provide data logging and rebroadcastimg features towards remote monitoring GUIs and sensor 
fusion software components.Initially, a complete instance of the 4(+2) sensors array has been calibrated using a 
controlled climatic chamber (described in  ref. [4]). Synthetic air was used as a bubbling carrier for Acetic Acid and 
Ethanol at different relative humidity percentages (see Table 1). In this setup, sensor resistances have been sampled 
at 30s intervals.  A 2-slots Tapped Delay Neural Network (TDNN) with 10 hidden layer neurons have then been 
trained and validated using leave-[1 exposure cycle]-out procedure (see [4]) for instantaneous concentration 
estimation. Mean Absolute Error (MAE)  divided by concentration ranges, was computed for the evaluation of 
overall array performance. The MAE/range value was eventually found to be  2.34% (0.75ppm) for Acetic Acid and 
6.5% (9.8ppm) for Ethanol (see fig. 1). These results encouraged us to proceed with the second experimental setup 
involving the deployment of the 4 complete w-noses network in an ad-hoc glass box (Volume=0.36 m3) in order to 
evaluate  their capability to reconstruct a real time 3D chemical concentration image of the two pollutants. Different 
amounts of the two chemicals (see table 2) have been introduced and diluted until complete evaporation with the use 
of a standard PC-fan. At steady state, based on the reasonable hypothesis of uniform concentration distribution over 
the box, for each of the deployed w-noses, the  responses of the  4 chemical sensors to the gas mixture were sampled 
(1Hz) together with recorded environmental RH and temperature. The sampled values were used to build a suitable 
dataset for the training of  pattern recognition algorithm devised to estimate pollutants concentrations. This dataset 
was, in facts, used to train a FFNN  (Feed forward Neural Network) based two level classifier/regressor scheme that 
was then coded using NESC language and deployed on-board on each the wireless electronic noses.  In this way, 
each of the w-nose was made capable to estimate the local pollutants concentration at its deployment location. 
Further 10 runs of steady state samples acquisition with the same procedure was then used to build a suitable test 
set. Kernel-DV algorithm (see [3]), originally developed by the Lilienthal group for the use with mobile robot 
acquisitions, was adapted for real time 3D sensor fusion in order to reconstruct a real time chemical concentration 
map of the two gases within the glass box.  The algorithm use a a 3D Gaussian kernel to propagate localized 
measurement to a 3D environment based on confidence values depending on the point distance from the actual 
measurement points.  Estimation based on the propagation are balanced with a default averaged value  
(homogeneous gas distribution) by the use of the confidence value that is normalized by a scale factor . Eventually, 
should confidence value fall to 0 (points located far from all actual measurement points) the algorithm revert to the 
homogeneous gas distribution hypothesis. In the last setup, 17 μg of Ethanol was let evaporate within the glass box 
in one of the left-down box corner. By using the neural calibration obtained before and encoded in the on board 
computational intelligence component , the single nodes were able to estimate local concentration of both gases. 
Their estimations were transmitted and collected at datasink where  a sensor fusion component was coded to 
reconstruct an instantaneous 3D chemical image of the box.  

3. Results and conclusions 
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As regards as the evaluation of steady state estimation performances for the single  w-noses, MAE figures were 
computed by using the above mentioned  test set. The MAE, averaged for all the 4 w-noses, reached 3.15ppm and 
4.36ppm for ethanol and acetic acid, respectively. This figures allow us to locate the expected absolute error on the  
real-time local concentration estimation under a 5 ppm threshold. This value is valid for concentration estimation in 
a  mixture, and so in presence of interferents, provided that concentrations levels have  a slow variation rate. Overall 
performance of the 3D reconstruction algorithm depends on the value of three base parameters, i.e. cell mesh width, 
the kernel width , the confidence scale parameter and, of course, by the w-nose deployment positions. Cell mesh 
width only trade off  3D reconstruction resolution with computational costs, for this reason a fixed value that 
allowed for real time reconstruction has been selected. Confidence scale parameter depends on kernel width so, for a 
fixed deployment configuration of the w-noses, an automated procedure has been designed to choose the appropriate 
kernel width parameter value on the basis of a leave-one-mote out approach. Actually, scanning by brute force a 
parameter values array ([0.05, 0.10, 0.15, 0.2]), for each parameters setting, all but one sensing nodes have been 
used to estimate the concentration value of the two analytes, with the adapted Kernel-DV algorithm, at the 
remaining node position. Figure 3 shows the comparison between local instantaneous concentration estimation at 
node position 3 and estimation carried out by the 3D reconstruction algorithm at the same position. Without 
affecting generalization, the mean absolute difference between the estimated value and the actual value as estimated 
by the remaining node, during all the exposure time, has been defined as the performance value to be optimized by 
the brute force approach.  

Table 1: The different gas mixtures used during the controlled 

chamber experimental setup were synthesized by using all 

combination of the reported concentration of Acetic Acid and 

Ethanol at different relative humidity for total 216 cycles. The baseline 

mixture was set at RH = 50%. 

RH (%) Gas Concentration Ranges 

[20,30,50] 

Acetic Acid (ppm) Ethanol (ppm) 

[0,5,7,10,15, 

20,25,30,32] 

[0,15,30,70,90, 

115,130,150] 

Table 2: The different gas mixtures used during the glass box 

experimental setup were synthesized by using all combination of the 

above reported concentration of Acetic Acid and Ethanol. For each 

combination, two different exposure cycles were executed. Steady state 

sensor array response to each exposure cycle was recorded to build the 

training dataset. Ambient RH values and temperatures (not controlled) 

were also recorded to be part of the on board NN feature set.

Gas Concentration Ranges 

Acetic Acid (ppm) Ethanol (ppm) 

[0,5,10,15,20] [0,6,12,17,23] 

Figure 1: Sensor array responses in controlled chamber setup (a); 

Trained TDNN responses and Ground Truth comparison during the 

correspondent complete exposure cycle (b).

Figure 2: On Board neural network response versus actual Acetic 

Acid concentration in the glass box experimental setup, validated @ 

different  acetic acid concentrations ( range reported in table 2).
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Figure 4 shows the averaged instantaneous absolute difference among local and 3D reconstruction based estimations 
for the 4 motes in the ethanol case. Peaks can be spotted in the uprise and downfall of the concentration levels 
during transients. The peaks can be explained by the different concentrations experimented by the motes during 
transients due to their different positions. In this case, the peaks magnitude could be effectively reduced by tuning 
mote positioning and density of the measurement mesh in the sensed environment. Figures 5 and 6 depicts, 
respectively, w-nose positioning and an instantaneous reconstruction of the concentration of the two pollutants.  
This preliminary results shows the possibility to effectively use a w-nose deployment for real time 3D quantitative 
air quality analysis in presence of a pollutants mixture. The use of mote crossvalidation has been also shown for the 
sensor fusion algorithm parameter tuning and performance evaluation. 

Figure 3: Instantaneous  ethanol concentration estimation as computed 

at node 3 (blue) compared with the estimation obtained by 3D 

reconstruction, using the remaining 3 nodes, at the same location.  The 

experimental setup foresee the deployment of 4 w-noses in the 0.36 

m^3 glass box and the release of  17 microgram (20,9 ppm) of ethanol 

near one corner of the box.  

Figure 4: Instantaneous absolute difference among local ethanol 

concentration and 3D reconstruction algorithm with kernel width   set 

at 0.1 value. The instantaneous difference reported here was averaged 

throughout the leave-one-mote-out procedure executed for the 

exposure to 17 microgram (20,9 ppm) of ethanol. The computed MAE 

value was used for the optimization of  the 3D reconstruction 

algorithm.

Figure 5:  Positioning of the 4 w-noses and gas 

source within the glass box.  

Figure 6: Istantaneous 3D ethanol (right) and acetic acid (left) concentration 

reconstruction (computed @ datasink) using a 4 w-nose deployment in the glass box 

experimental setup.  
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