21 research outputs found

    Seasonal malaria vaccination: protocol of a phase 3 trial of seasonal vaccination with the RTS,S/AS01E vaccine, seasonal malaria chemoprevention and the combination of vaccination and chemoprevention.

    Get PDF
    INTRODUCTION: Seasonal malaria chemoprevention (SMC), with sulphadoxine-pyrimethamine plus amodiaquine (SP+AQ) is effective but does not provide complete protection against clinical malaria. The RTS,S/AS01E malaria vaccine provides a high level of protection shortly after vaccination, but this wanes rapidly. Such a vaccine could be an alternative or additive to SMC. This trial aims to determine whether seasonal vaccination with RTS,S/AS01E vaccine could be an alternative to SMC and whether a combination of the two interventions would provide added benefits. METHODS AND ANALYSIS: This is an individually randomised, double-blind, placebo-controlled trial. 5920 children aged 5-17 months were enrolled in April 2017 in Mali and Burkina Faso. Children in group 1 received three priming doses of RTS,S/AS01E vaccine before the start of the 2017 malaria transmission season and a booster dose at the beginning of two subsequent transmission seasons. In addition, they received SMC SP+AQ placebo on four occasions each year. Children in group 2 received three doses of rabies vaccine in year 1 and hepatitis A vaccine in years 2 and 3 together with four cycles of SMC SP+AQ each year. Children in group 3 received RTS,S/AS01E vaccine and four courses of SMC SP+AQ. Incidence of clinical malaria is determined by case detection at health facilities. Weekly active surveillance for malaria is undertaken in a randomly selected subset of children. The prevalence of malaria is measured in surveys at the end of each transmission season. The primary endpoint is the incidence of clinical malaria confirmed by a positive blood film with a minimum parasite density of 5000 /µL. Primary analysis will be by modified intention to treat defined as children who have received the first dose of the malaria or control vaccine. ETHICS AND DISSEMINATION: The protocol was approved by the national ethics committees of Mali and Burkina Faso and the London School of Hygiene and Tropical Medicine. The results will be presented to all stakeholders and published in open access journals. TRIAL REGISTRATION NUMBER: NCT03143218; Pre-results

    Persistence of mRNA indicative of Plasmodium falciparum ring-stage parasites 42 days after artemisinin and non-artemisinin combination therapy in naturally infected Malians.

    Get PDF
    BACKGROUND: Malaria control in sub-Saharan Africa relies upon prompt case management with artemisinin-based combination therapy (ACT). Ring-stage parasite mRNA, measured by sbp1 quantitative reverse-transcriptase PCR (qRT-PCR), was previously reported to persist after ACT treatment and hypothesized to reflect temporary arrest of the growth of ring-stage parasites (dormancy) following exposure to artemisinins. Here, the persistence of ring-stage parasitaemia following ACT and non-ACT treatment was examined. METHODS: Samples were used from naturally infected Malian gametocyte carriers who received dihydroartemisinin-piperaquine (DP) or sulfadoxine-pyrimethamine (SP-AQ) with or without gametocytocidal drugs. Gametocytes and ring-stage parasites were quantified by qRT-PCR during 42 days of follow-up. RESULTS: At baseline, 89% (64/73) of participants had measurable ring-stage parasite mRNA. Following treatment, the proportion of ring-stage parasite-positive individuals and estimated densities declined for all four treatment groups. Ring-stage parasite prevalence and density was generally lower in arms that received DP compared to SP-AQ. This finding was most apparent days 1, 2, and 42 of follow-up (p < 0.01). Gametocytocidal drugs did not influence ring-stage parasite persistence. Ring-stage parasite density estimates on days 14 and 28 after initiation of treatment were higher among individuals who subsequently experienced recurrent parasitaemia compared to those who remained free of parasites until day 42 after initiation of treatment (pday 14 = 0.011 and pday 28 = 0.068). No association of ring-stage persistence with gametocyte carriage was observed. CONCLUSIONS: The current findings of lower ring-stage persistence after ACT without an effect of gametocytocidal partner drugs affirms the use of sbp1 as ring-stage marker. Lower persistence of ring-stage mRNA after ACT treatment suggests the marker may not reflect dormant parasites whilst it was predictive of re-appearance of parasitaemia

    Safety of Single-Dose Primaquine in G6PD-Deficient and G6PD-Normal Males in Mali Without Malaria : An Open-Label, Phase 1, Dose-Adjustment Trial

    Get PDF
    Erratum: The Journal of Infectious Diseases, Volume 217, Issue 7, 1 April 2018, Page 1171, https://doi.org/10.1093/infdis/jiy074Methods: We conducted an open-label, nonrandomized, dose-adjustment trial of the safety of 3 single doses of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient adult males in Mali, followed by an assessment of safety in G6PD-deficient boys aged 11–17 years and those aged 5–10 years, including G6PD-normal control groups. The primary outcome was the greatest within-person percentage drop in hemoglobin concentration within 10 days after treatment. Results: Fifty-one participants were included in analysis. G6PD-deficient adult males received 0.40, 0.45, or 0.50 mg/kg of SLD-PQ. G6PD-deficient boys received 0.40 mg/kg of SLD-PQ. There was no evidence of symptomatic hemolysis, and adverse events considered related to study drug (n = 4) were mild. The mean largest within-person percentage change in hemoglobin level between days 0 and 10 was −9.7% (95% confidence interval [CI], −13.5% to −5.90%) in G6PD-deficient adults receiving 0.50 mg/kg of SLD-PQ, −11.5% (95% CI, −16.1% to −6.96%) in G6PD-deficient boys aged 11–17 years, and −9.61% (95% CI, −7.59% to −13.9%) in G6PD-deficient boys aged 5–10 years. The lowest hemoglobin concentration at any point during the study was 92 g/L. Conclusion: SLD-PQ doses between 0.40 and 0.50 mg/kg were well tolerated in G6PD-deficient males in Mali.Methods: We conducted an open-label, nonrandomized, dose-adjustment trial of the safety of 3 single doses of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient adult males in Mali, followed by an assessment of safety in G6PD-deficient boys aged 11–17 years and those aged 5–10 years, including G6PD-normal control groups. The primary outcome was the greatest within-person percentage drop in hemoglobin concentration within 10 days after treatment. Results: Fifty-one participants were included in analysis. G6PD-deficient adult males received 0.40, 0.45, or 0.50 mg/kg of SLD-PQ. G6PD-deficient boys received 0.40 mg/kg of SLD-PQ. There was no evidence of symptomatic hemolysis, and adverse events considered related to study drug (n = 4) were mild. The mean largest within-person percentage change in hemoglobin level between days 0 and 10 was −9.7% (95% confidence interval [CI], −13.5% to −5.90%) in G6PD-deficient adults receiving 0.50 mg/kg of SLD-PQ, −11.5% (95% CI, −16.1% to −6.96%) in G6PD-deficient boys aged 11–17 years, and −9.61% (95% CI, −7.59% to −13.9%) in G6PD-deficient boys aged 5–10 years. The lowest hemoglobin concentration at any point during the study was 92 g/L. Conclusion: SLD-PQ doses between 0.40 and 0.50 mg/kg were well tolerated in G6PD-deficient males in Mali.Peer reviewe

    Primaquine to reduce transmission of Plasmodium falciparum malaria in Mali : a single-blind, dose-ranging, adaptive randomised phase 2 trial

    Get PDF
    Background Single low doses of primaquine, when added to artemisinin-based combination therapy, might prevent transmission of Plasmodium falciparum malaria to mosquitoes. We aimed to establish the activity and safety of four low doses of primaquine combined with dihydroartemisinin-piperaquine in male patients in Mali. Methods In this phase 2, single-blind, dose-ranging, adaptive randomised trial, we enrolled boys and men with uncomplicated P falciparum malaria at the Malaria Research and Training Centre (MRTC) field site in Ouelessebougou, Mali. All participants were confirmed positive carriers of gametocytes through microscopy and had normal function of glucose-6-phosphate dehydrogenase (G6PD) on colorimetric quantification In the first phase, participants were randomly assigned (1:1:1) to one of three primaquine doses: 0 mg/kg (control), 0.125 mg/kg, and 0.5 mg/kg. Randomisation was done with a computer-generated randomisation list (in block sizes of six) and concealed with sealed, opaque envelopes. In the second phase, different participants were sequentially assigned (1:1) to 0.25 mg/kg primaquine or 0.0625 mg/kg primaquine. Primaquine tablets were dissolved into a solution and administered orally in a single dose. Participants were also given a 3 day course of dihydroartemisinin-piperaquine, administered by weight (320 mg dihydroartemisinin and 40 mg piperaquine per tablet). Outcome assessors were masked to treatment allocation, but participants were permitted to find out group assignment. Infectivity was assessed through membrane feeding assays, which were optimised through the beginning part of phase one. The primary efficacy endpoint was the mean within-person percentage change in mosquito infectivity 2 days after primaquine treatment in participants who completed the study after optimisation of the infectivity assay, had both a pre-treatment infectivity measurement and at least one follow-up infectivity measurement, and who were given the correct primaquine dose. The safety endpoint was the mean within-person change in haemoglobin concentration during 28 days of study follow-up in participants with at least one follow-up visit. This study is registered with ClinicalTrials.gov, number NCT01743820. Findings Between Jan 2,2013, and Nov 27,2014, we enrolled 81 participants. In the primary analysis sample (n=71), participants in the 0.25 mg/kg primaquine dose group (n=15) and 0.5 mg/kg primaquine dose group (n=14) had significantly lower mean within-person reductions in infectivity at day 2-92.6% (95% CI 78.3-100; p=0.0014) for the 0.25 mg/kg group; and 75.0% (45.7-100; p=0.014) for the 0.5 mg/kg primaquine group compared with those in the control group (n=14; 11.3% [-27.4 to 50.0]). Reductions were not significantly different from control for participants assigned to the 0.0625 mg/kg dose group (n=16; 41.9% [1.4-82.5]; p=0.16) and the 0.125 mg/kg dose group (n=12; 54.9% [13.4-96.3]; p=0.096). No clinically meaningful or statistically significant drops in haemoglobin were recorded in any individual in the haemoglobin analysis (n=70) during follow-up. No serious adverse events were reported and adverse events did not differ between treatment groups. Interpretation A single dose of 0.25 mg/kg primaquine, given alongside dihydroartemisinin-piperaquine, was safe and efficacious for the prevention of P falciparum malaria transmission in boys and men who are not deficient in G6PD. Future studies should assess the safety of single-dose primaquine in G6PD-deficient individuals to define the therapeutic range of primaquine to enable the safe roll-out of community interventions with primaquine.Peer reviewe

    Efficacy and safety of primaquine and methylene blue for prevention of Plasmodium falciparum transmission in Mali: a phase 2, single-blind, randomised controlled trial.

    Get PDF
    BACKGROUND: Primaquine and methylene blue are gametocytocidal compounds that could prevent Plasmodium falciparum transmission to mosquitoes. We aimed to assess the efficacy and safety of primaquine and methylene blue in preventing human to mosquito transmission of P falciparum among glucose-6-phosphate dehydrogenase (G6PD)-normal, gametocytaemic male participants. METHODS: This was a phase 2, single-blind, randomised controlled trial done at the Clinical Research Centre of the Malaria Research and Training Centre (MRTC) of the University of Bamako (Bamako, Mali). We enrolled male participants aged 5-50 years with asymptomatic P falciparum malaria. G6PD-normal participants with gametocytes detected by blood smear were randomised 1:1:1:1 in block sizes of eight, using a sealed-envelope design, to receive either sulfadoxine-pyrimethamine and amodiaquine, sulfadoxine-pyrimethamine and amodiaquine plus a single dose of 0·25 mg/kg primaquine, dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus 15 mg/kg per day methylene blue for 3 days. Laboratory staff, investigators, and insectary technicians were masked to the treatment group and gametocyte density of study participants. The study pharmacist and treating physician were not masked. Participants could request unmasking. The primary efficacy endpoint, analysed in all infected patients with at least one infectivity measure before and after treatment, was median within-person percentage change in mosquito infectivity 2 and 7 days after treatment, assessed by membrane feeding. This study is registered with ClinicalTrials.gov, number NCT02831023. FINDINGS: Between June 27, 2016, and Nov 1, 2016, 80 participants were enrolled and assigned to the sulfadoxine-pyrimethamine and amodiaquine (n=20), sulfadoxine-pyrimethamine and amodiaquine plus primaquine (n=20), dihydroartemisinin-piperaquine (n=20), or dihydroartemisinin-piperaquine plus methylene blue (n=20) groups. Among participants infectious at baseline (54 [68%] of 80), those in the sulfadoxine-pyrimethamine and amodiaquine plus primaquine group (n=19) had a median 100% (IQR 100 to 100) within-person reduction in mosquito infectivity on day 2, a larger reduction than was noted with sulfadoxine-pyrimethamine and amodiaquine alone (n=12; -10·2%, IQR -143·9 to 56·6; p<0·0001). The dihydroartemisinin-piperaquine plus methylene blue (n=11) group had a median 100% (IQR 100 to 100) within-person reduction in mosquito infectivity on day 2, a larger reduction than was noted with dihydroartemisinin-piperaquine alone (n=12; -6·0%, IQR -126·1 to 86·9; p<0·0001). Haemoglobin changes were similar between gametocytocidal arms and their respective controls. After exclusion of blue urine, adverse events were similar across all groups (59 [74%] of 80 participants had 162 adverse events overall, 145 [90%] of which were mild). INTERPRETATION: Adding a single dose of 0·25 mg/kg primaquine to sulfadoxine-pyrimethamine and amodiaquine or 3 days of 15 mg/kg per day methylene blue to dihydroartemisinin-piperaquine was highly efficacious for preventing P falciparum transmission. Both primaquine and methylene blue were well tolerated. FUNDING: Bill & Melinda Gates Foundation, European Research Council

    Pyronaridine-artesunate or dihydroartemisinin-piperaquine combined with single low-dose primaquine to prevent Plasmodium falciparum malaria transmission in Ouélessébougou, Mali: a four-arm, single-blind, phase 2/3, randomised trial.

    Get PDF
    BACKGROUND: Pyronaridine-artesunate is the most recently licensed artemisinin-based combination therapy. WHO has recommended that a single low dose of primaquine could be added to artemisinin-based combination therapies to reduce Plasmodium falciparum transmission in areas aiming for elimination of malaria or areas facing artemisinin resistance. We aimed to determine the efficacy of pyronaridine-artesunate and dihydroartemisinin-piperaquine with and without single low-dose primaquine for reducing gametocyte density and transmission to mosquitoes. METHODS: We conducted a four-arm, single-blind, phase 2/3, randomised trial at the Ouélessébougou Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako (Bamako, Mali). Participants were aged 5-50 years, with asymptomatic P falciparum malaria mono-infection and gametocyte carriage on microscopy, haemoglobin density of 9·5 g/dL or higher, bodyweight less than 80 kg, and no use of antimalarial drugs over the past week. Participants were randomly assigned (1:1:1:1) to one of four treatment groups: pyronaridine-artesunate, pyronaridine-artesunate plus primaquine, dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus primaquine. Treatment allocation was concealed to all study staff other than the trial pharmacist and treating physician. Dihydroartemisinin-piperaquine and pyronaridine-artesunate were administered as per manufacturer guidelines over 3 days; primaquine was administered as a single dose in oral solution according to bodyweight (0·25 mg/kg; in 1 kg bands). The primary endpoint was percentage reduction in mosquito infection rate (percentage of mosquitoes surviving to dissection that were infected with P falciparum) at 48 h after treatment compared with baseline (before treatment) in all treatment groups. Data were analysed per protocol. This trial is now complete, and is registered with ClinicalTrials.gov, NCT04049916. FINDINGS: Between Sept 10 and Nov 19, 2019, 1044 patients were assessed for eligibility and 100 were enrolled and randomly assigned to one of the four treatment groups (n=25 per group). Before treatment, 66 (66%) of 100 participants were infectious to mosquitoes, with a median of 15·8% (IQR 5·4-31·9) of mosquitoes becoming infected. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 48 h after treatment was 100·0% (IQR 100·0 to 100·0) for individuals treated with pyronaridine-artesunate plus primaquine (n=18; p<0·0001) and dihydroartemisinin-piperaquine plus primaquine (n=15; p=0·0001), compared with -8·7% (-54·8 to 93·2) with pyronaridine-artesunate (n=17; p=0·88) and 50·4% (13·8 to 70·9) with dihydroartemisinin-piperaquine (n=16; p=0·13). There were no serious adverse events, and there were no significant differences between treatment groups at any point in the frequency of any adverse events (Fisher's exact test p=0·96) or adverse events related to study drugs (p=0·64). The most common adverse events were headaches (40 events in 32 [32%] of 100 participants), rhinitis (31 events in 30 [30%]), and respiratory infection (20 events in 20 [20%]). INTERPRETATION: These data support the use of single low-dose primaquine as an effective supplement to dihydroartemisinin-piperaquine and pyronaridine-artesunate for blocking P falciparum transmission. The new pyronaridine-artesunate plus single low-dose primaquine combination is of immediate relevance to regions in which the containment of partial artemisinin and partner-drug resistance is a growing concern and in regions aiming to eliminate malaria. FUNDING: The Bill & Melinda Gates Foundation. TRANSLATIONS: For the French, Spanish and Swahilil translations of the abstract see Supplementary Materials section

    The duration of protection against clinical malaria provided by the combination of seasonal RTS,S/AS01E vaccination and seasonal malaria chemoprevention versus either intervention given alone

    Get PDF
    BACKGROUND: A recent trial of 5920 children in Burkina Faso and Mali showed that the combination of seasonal vaccination with the RTS,S/AS01E malaria vaccine (primary series and two seasonal boosters) and seasonal malaria chemoprevention (four monthly cycles per year) was markedly more effective than either intervention given alone in preventing clinical malaria, severe malaria, and deaths from malaria. METHODS: In order to help optimise the timing of these two interventions, trial data were reanalysed to estimate the duration of protection against clinical malaria provided by RTS,S/AS01E when deployed seasonally, by comparing the group who received the combination of SMC and RTS,S/AS01E with the group who received SMC alone. The duration of protection from SMC was also estimated comparing the combined intervention group with the group who received RTS,S/AS01E alone. Three methods were used: Piecewise Cox regression, Flexible parametric survival models and Smoothed Schoenfeld residuals from Cox models, stratifying on the study area and using robust standard errors to control for within-child clustering of multiple episodes. RESULTS: The overall protective efficacy from RTS,S/AS01E over 6 months was at least 60% following the primary series and the two seasonal booster doses and remained at a high level over the full malaria transmission season. Beyond 6 months, protective efficacy appeared to wane more rapidly, but the uncertainty around the estimates increases due to the lower number of cases during this period (coinciding with the onset of the dry season). Protection from SMC exceeded 90% in the first 2-3 weeks post-administration after several cycles, but was not 100%, even immediately post-administration. Efficacy begins to decline from approximately day 21 and then declines more sharply after day 28, indicating the importance of preserving the delivery interval for SMC cycles at a maximum of four weeks. CONCLUSIONS: The efficacy of both interventions was highest immediately post-administration. Understanding differences between these interventions in their peak efficacy and how rapidly efficacy declines over time will help to optimise the scheduling of SMC, malaria vaccination and the combination in areas of seasonal transmission with differing epidemiology, and using different vaccine delivery systems. TRIAL REGISTRATION: The RTS,S-SMC trial in which these data were collected was registered at clinicaltrials.gov: NCT03143218

    Impact of seasonal RTS,S/AS01E vaccination plus seasonal malaria chemoprevention on the nutritional status of children in Burkina Faso and Mali.

    Get PDF
    BACKGROUND: A recent trial in Burkina Faso and Mali showed that combining seasonal RTS,S/AS01E malaria vaccination with seasonal malaria chemoprevention (SMC) substantially reduced the incidence of uncomplicated and severe malaria in young children compared to either intervention alone. Given the possible negative effect of malaria on nutrition, the study investigated whether these children also experienced lower prevalence of acute and chronic malnutrition. METHODS: In Burkina Faso and Mali 5920 children were randomized to receive either SMC alone, RTS,S/AS01E alone, or SMC combined with RTS,S/AS01E for three malaria transmission seasons (2017-2019). After each transmission season, anthropometric measurements were collected from all study children at a cross-sectional survey and used to derive nutritional status indicators, including the binary variables wasted and stunted (weight-for-height and height-for-age z-scores below - 2, respectively). Binary and continuous outcomes between treatment groups were compared by Poisson and linear regression. RESULTS: In 2017, compared to SMC alone, the combined intervention reduced the prevalence of wasting by approximately 12% [prevalence ratio (PR) = 0.88 (95% CI 0.75, 1.03)], and approximately 21% in 2018 [PR = 0.79 (95% CI 0.62, 1.01)]. Point estimates were similar for comparisons with RTS,S/AS01E, but there was stronger evidence of a difference. There was at least a 30% reduction in the point estimates for the prevalence of severe wasting in the combined group compared to the other two groups in 2017 and 2018. There was no difference in the prevalence of moderate or severe wasting between the groups in 2019. The prevalence of stunting, low-MUAC-for-age or being underweight did not differ between groups for any of the three years. The prevalence of severe stunting was higher in the combined group compared to both other groups in 2018, and compared to RTS,S/AS01E alone in 2017; this observation does not have an obvious explanation and may be a chance finding. Overall, malnutrition was very common in this cohort, but declined over the study as the children became older. CONCLUSIONS: Despite a high burden of malnutrition and malaria in the study populations, and a major reduction in the incidence of malaria in children receiving both interventions, this had only a modest impact on nutritional status. Therefore, other interventions are needed to reduce the high burden of malnutrition in these areas. TRIAL REGISTRATION: https://www.clinicaltrials.gov/ct2/show/NCT03143218 , registered 8th May 2017

    Seasonal Malaria Vaccination with or without Seasonal Malaria Chemoprevention.

    Get PDF
    BACKGROUND: Malaria control remains a challenge in many parts of the Sahel and sub-Sahel regions of Africa. METHODS: We conducted an individually randomized, controlled trial to assess whether seasonal vaccination with RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria and whether the two interventions combined were superior to either one alone in preventing uncomplicated malaria and severe malaria-related outcomes. RESULTS: We randomly assigned 6861 children 5 to 17 months of age to receive sulfadoxine-pyrimethamine and amodiaquine (2287 children [chemoprevention-alone group]), RTS,S/AS01E (2288 children [vaccine-alone group]), or chemoprevention and RTS,S/AS01E (2286 children [combination group]). Of these, 1965, 1988, and 1967 children in the three groups, respectively, received the first dose of the assigned intervention and were followed for 3 years. Febrile seizure developed in 5 children the day after receipt of the vaccine, but the children recovered and had no sequelae. There were 305 events of uncomplicated clinical malaria per 1000 person-years at risk in the chemoprevention-alone group, 278 events per 1000 person-years in the vaccine-alone group, and 113 events per 1000 person-years in the combination group. The hazard ratio for the protective efficacy of RTS,S/AS01E as compared with chemoprevention was 0.92 (95% confidence interval [CI], 0.84 to 1.01), which excluded the prespecified noninferiority margin of 1.20. The protective efficacy of the combination as compared with chemoprevention alone was 62.8% (95% CI, 58.4 to 66.8) against clinical malaria, 70.5% (95% CI, 41.9 to 85.0) against hospital admission with severe malaria according to the World Health Organization definition, and 72.9% (95% CI, 2.9 to 92.4) against death from malaria. The protective efficacy of the combination as compared with the vaccine alone against these outcomes was 59.6% (95% CI, 54.7 to 64.0), 70.6% (95% CI, 42.3 to 85.0), and 75.3% (95% CI, 12.5 to 93.0), respectively. CONCLUSIONS: Administration of RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria. The combination of these interventions resulted in a substantially lower incidence of uncomplicated malaria, severe malaria, and death from malaria than either intervention alone. (Funded by the Joint Global Health Trials and PATH; ClinicalTrials.gov number, NCT03143218.)
    corecore