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Abstract 

Background: Malaria control in sub-Saharan Africa relies upon prompt case management with artemisinin-based 
combination therapy (ACT). Ring-stage parasite mRNA, measured by sbp1 quantitative reverse-transcriptase PCR 
(qRT-PCR), was previously reported to persist after ACT treatment and hypothesized to reflect temporary arrest of 
the growth of ring-stage parasites (dormancy) following exposure to artemisinins. Here, the persistence of ring-stage 
parasitaemia following ACT and non-ACT treatment was examined.

Methods: Samples were used from naturally infected Malian gametocyte carriers who received dihydroartemisinin–
piperaquine (DP) or sulfadoxine–pyrimethamine (SP–AQ) with or without gametocytocidal drugs. Gametocytes and 
ring-stage parasites were quantified by qRT-PCR during 42 days of follow-up.

Results: At baseline, 89% (64/73) of participants had measurable ring-stage parasite mRNA. Following treatment, the 
proportion of ring-stage parasite-positive individuals and estimated densities declined for all four treatment groups. 
Ring-stage parasite prevalence and density was generally lower in arms that received DP compared to SP–AQ. This 
finding was most apparent days 1, 2, and 42 of follow-up (p < 0.01). Gametocytocidal drugs did not influence ring-
stage parasite persistence. Ring-stage parasite density estimates on days 14 and 28 after initiation of treatment were 
higher among individuals who subsequently experienced recurrent parasitaemia compared to those who remained 
free of parasites until day 42 after initiation of treatment  (pday 14 = 0.011 and  pday 28 = 0.068). No association of ring-
stage persistence with gametocyte carriage was observed.

Conclusions: The current findings of lower ring-stage persistence after ACT without an effect of gametocytocidal 
partner drugs affirms the use of sbp1 as ring-stage marker. Lower persistence of ring-stage mRNA after ACT treatment 
suggests the marker may not reflect dormant parasites whilst it was predictive of re-appearance of parasitaemia.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Malaria Journal

*Correspondence:  teun.bousema@radboudumc.nl
†Teun Bousema and Michelle E. Roh contributed equally to this work
2 Radboud Institute for Health Sciences, Radboud University Medical 
Center, Geert Grooteplein Zuid 26-28, PO Box 9101, 6525GA Nijmegen, 
The Netherlands
Full list of author information is available at the end of the article

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSHTM Research Online

https://core.ac.uk/display/478096962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-2666-094X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12936-020-03576-z&domain=pdf


Page 2 of 9Mahamar et al. Malar J           (2021) 20:34 

Background
Malaria is a leading cause of global morbidity and 
mortality. In 2018, an estimated 228 million cases 
and 405,000 malaria-associated deaths were reported 
worldwide [1]. In sub-Saharan Africa, prompt diag-
nosis and treatment with artemisinin-based combi-
nation therapy (ACT) remains a key strategy for the 
treatment of uncomplicated Plasmodium falciparum 
malaria. Artemisinin-based combinations consist of 
an artemisinin derivative that rapidly reduces parasite 
burden and a partner drug with a longer half-life that 
clears remaining parasitaemia and provides prophylac-
tic activity for weeks post-treatment. At present, arte-
misinin derivatives retain excellent efficacy in most of 
Africa despite decreased sensitivity to some of its part-
ner drugs [2] and reports of emergence of artemisinin 
resistance in East Africa [3]. Whilst recent anti-malar-
ial efficacy trials in Africa have shown overwhelmingly 
high treatment success after ACT (≥ 95%) [2], parasites 
may persist shortly after initiation of treatment [4]. 
Though this parasite persistence may not necessarily 
reflect drug resistance, which also depend on initial 
parasite density, host immunity, and drug absorption 
[5, 6], it is important to better understand what parasite 
populations persist and whether parasite persistence 
has consequences for later recrudescence [6].

Post-treatment detection of parasite DNA may reflect 
(remnants of ) asexual parasites and gametocytes [7, 8], 
the latter commonly known to persist after ACT treat-
ment [9]. A study in travellers in Sweden [10] indicated 
that residual parasite DNA can be detected by qPCR 
for up to 42  days after successful treatment without 
evidence of viable asexual parasites or gametocytes. 
Recently, mRNA transcripts specific to ring-stage par-
asites (skeleton binding protein; sbp1) were reported 
following ACT treatment [7, 11]. This apparent per-
sistence of low-level asexual parasitaemia after ACT 
may be explained by the “dormancy theory” [12] which 
postulates that under artemisinin pressure, a subpopu-
lation of young ring-stage parasites undergo develop-
mental arrest where they remain metabolically inactive. 
It has been suggested that these low-density ring-stage 
parasites may represent ‘sleeping beauties’ (i.e. dor-
mant parasites that can tolerate artemisinin treatment, 
but are sensitive to other anti-malarials) [13, 14] and 
this mechanism may explain why certain individuals 
experience recrudescence in the absence of actual arte-
misinin resistance. Recent evidence from controlled 

infections with artemisinin-sensitive Plasmodium fal-
ciparum 3D7 parasites suggests that dormant parasites 
can be induced by artemisinin monotherapy and pro-
vides a plausible explanation for recrudescences [15]. 
Published in vitro evidence [7], demonstrates that these 
dormant parasites are expected to recover continuously 
over 25 days causing recrudescence.

The aim of this study was to expand on earlier obser-
vations by examining ring-stage parasitaemia among trial 
participants that were followed for 42  days after being 
randomized to ACT or non-ACT anti-malarials with 
and without gametocytocidal drugs. This study allowed 
examination whether persisting ring-stage parasitaemia 
persists after administration of non-ACT, and whether 
the persistence of ring-stage parasites is associated with 
parasite recrudescence and/or continued gametocyte 
production.

Methods
Ethics statement
Ethical approval for the study was granted by the Eth-
ics Committee of the Faculty of Medicine, Pharmacy, 
and Dentistry of the University of Science, Techniques, 
and Technologies of Bamako (Bamako, Mali), the Com-
mittee on Human Research at the University of Califor-
nia San Francisco (UCSF; San Francisco, CA, USA), and 
the Research Ethics Committee of the London School of 
Hygiene & Tropical Medicine (London, UK).

Study cohort and sample collection
This study used samples obtained from participants of 
a trial in Ouélessébougou, Mali who were randomized 
1:1:1:1 to receive either sulfadoxine–pyrimethamine 
(SP–AQ), SP–AQ with single low-dose primaquine 
(SP–AQ + PQ), dihydroartemisinin-piperaquine (DP), 
or dihydroartemisinin–piperaquine with methylene blue 
(DP + MB) [16].  Eligible participants were males with 
asymptomatic P. falciparum mono-infection, between 
5 and 50  years of age, who were glucose-6-phosphate 
dehydrogenase (G6PD)-normal by CareStart G6PD rapid 
diagnostic test (Access Bio, Somerset, NJ, USA), had a 
hemoglobin concentration of ≥ 10 g/dL, and had a P. falci-
parum gametocyte density of ≥ 2 gametocytes/500 white 
blood cells by thick film microscopy. Participants were 
excluded if they had a serious or chronic illness (includ-
ing signs of severe malaria), weighed 80  kg or more, 
reported anti-malarial use within 7  days of screening 
(artemether–lumefantrine and artesunate–amodiaquine 
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being first-line treatments), or reported allergies to study 
drugs.

Details on the study procedures are described in the 
original paper [16]. In brief, participants were followed 
for 42 days and blood samples were obtained on days 0, 
1, 2, 7, 14, 28 and 42 after initiation of treatment. Blood 
smear microscopy was conducted on blood samples 
taken by finger prick on day 0 and all days of follow-
up to assess for asexual parasite and gametocyte den-
sity. For the measurement of ring-stage and gametocyte 
density by qRT-PCR, 100 μL of blood was collected in 
EDTA tubes and immediately transferred to RNAprotect 
(Qiagen) and stored at − 80  °C until extraction by Mag-
NAPure LC automated extractor (Total Nucleic Acid 
Isolation Kit-High Performance; Roche Applied Science, 
Indianapolis, IN, USA).

Laboratory analysis
Ring-stage parasites were quantified by qRT-PCR target-
ing the sbp1 mRNA transcript using previously described 
methods [7]. The limit of quantification of this assay is 
in the range of 1 parasite/µL[7], the limit of detection is 
0.01 parasite/µL Male and female gametocyte densities 
were quantified by qRT-PCR, targeting male PfMGET 
and female Pfs25 mRNA transcripts as described else-
where [16]. For samples that were microscopy-positive 
for asexual P. falciparum parasites on days 7, 14, 28, and 
42, PCR genotyping of glurp (glurp2), msp2 (Fc27), msp1 
(K1, MAD20 and RO33) and lc1 alleles were performed 
on samples obtained at enrollment and day of post-treat-
ment failure. Pre- and post-treatment pairs were ana-
lysed and classified as either recrudescent, re-infection, 
or indeterminate infections according to World Health 
Organization guidelines [8, 17].

Sample size considerations
The sample size for this study was dictated by the original 
clinical trial, with 20 individuals per study arm to allow a 
within-person change in infectivity after treatment [16]. 
It is acknowledged that this sample size is insufficient 
to quantify with precision the proportion of individu-
als with persisting ring-stage parasites post treatment. 
Despite modest in sample size, the current study samples 
do allow, a unique comparison of parasite persistence fol-
lowing ACT and non-ACT treatment. The latter group 
(i.e. individuals with confirmed parasite carriage receiv-
ing non-ACT treatment) is rare among clinical trials and 
allows exploration of the hypothesis that ring-stage para-
site persistence is specific for ACT treatment [12–14].

Statistical analysis
All analyses were performed using Stata 14.0 (StataCorp, 
College Station, TX, USA) and R (version 3.5.0; R Project 

for Statistical Computing; http://www.r-proje ct.org/). 
Comparisons between proportions were conducted using 
Chi-squared or Fisher’s exact test and Mann–Whitney 
tests were used to compare differences in parasite den-
sities, unless otherwise specified. Correlations between 
ring-stage and gametocyte parasite densities were 
assessed by Spearman’s rank correlation coefficient using 
the  log10 transformed versions of these variables. Gener-
alized estimating equations were used to compare SBP-1 
parasite prevalence and density between SP–AQ and DP 
arms, accounting for repeated observations for individu-
als. Log-binomial regression was used to model relative 
risk ratios and linear regression was used to model mean 
differences in log10-transformed SBP-1 parasite density. 
Models adjusted for baseline log10-transformed SBP-1 
parasite density. An interaction term between treatment 
and follow-up visit was included to assess whether par-
ticipants of the DP group cleared parasitaemia at a more 
rapid rate than SP–AQ. An overall F-test was used com-
pute the p-value testing joint effect of the interaction 
terms. Log-binomial regression models were used to 
assess whether age, weight, treatment arm, or baseline 
SBP-1 parasite density were associated with persistent 
parasitaemia on day 7 post-treatment. All tests were two-
sided with alpha = 0.05. p-values < 0.05 were considered 
statistically significant.

Results
Characteristics of sample population
The study included 73/80 (91%) males from the original 
trial [16] (Table 1). Seven participants withdrew consent. 
Of the 73 remaining, 75% were between 5 and 14 years 
old and randomized to receive SP–AQ (n = 18), SP–
AQ + PQ (n = 18), DP (n = 18); or DP + MB (n = 19). In 
this population, recruited based on microscopy-detect-
able gametocyte carriage, 64 (89%) had a measurable 
density of ring-stage parasites by qRT-PCR. This indi-
cates that a minority were individuals who had gameto-
cytes only and cleared their initial asexual infection. At 
baseline, ring-stage parasite density by qRT-PCR was 
positively correlated with microscopy-detected asex-
ual parasite density (Spearman’s rho = 0.83, p < 0.0001). 
Younger participants (between 5 and 14) had higher 
baseline ring-stage parasite densities compared to those 
15  years and above (p < 0.02). Baseline ring-stage para-
site density estimates were similar between randomized 
treatment groups (p = 0.61).

Parasite kinetics following treatment
Following anti-malarial treatment, the prevalence and 
density of ring-stage parasites reduced across all four 
treatment arms (Fig.  1; Tables  2, 3). Ring-stage kinetics 
were similar between SP–AQ and SP–AQ + PQ arms and 

http://www.r-project.org/
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between DP vs DP + MB arms (Fig.  1; Additional file  1: 
Tables S1, S2), prompting us to combine arms receiv-
ing SP–AQ and arms receiving DP. Ring-stage parasite 
prevalence was, on average, 24% lower in the combined 
DP group compared to the combined SP–AQ group 
 (RRoverall = 0.76 [95% CI 0.62, 0.94]; p = 0.012) (Table 2). 
Similarly, estimated SBP-1 parasite density was, on aver-
age, 82% [95% CI 62, 92] lower in combined DP group 
compared to the SP–AQ group (p < 0.001). This find-
ing was most apparent days 1, 2, and 42 of follow-up 

(p < 0.01) (Table 3). Models including an interaction term 
between DP and follow-up visit found DP was associated 
with a more rapid reduction in ring-stage parasite density 
than SP–AQ  (pDP × time = 0.005).

Despite anti-malarial treatment, ring-stage parasite 
RNA was still detectable across all days of follow-up and 
all treatment arms (Table  2). On day 7 post-treatment, 
14 (19%) participants had detectable levels of ring-stage 
parasitaemia, despite only one person being microscopy-
positive for asexual parasites (who was later classified 
as having a recrudescent infection). Multivariate log-
binomial regression was used to determine which factors 
were associated with the presence of ring-stage parasites 
on day 7. Participants with persistent parasitaemia on 
day 7 were more likely to have higher ring-stage para-
site densities at baseline (relative risk ratio = 1.31 [95 CI 
1.00, 1.73] increase in risk for every 1% increase in log10-
transformed baseline SBP1 parasite density; p = 0.049). 
However, age (p = 0.84), weight (p = 0.92), and treatment 
type (p = 0.30) were not statistically significant predictors 
of persistent parasitaemia on day 7.

Spearman rank correlation tests were used to assess 
whether the persistence of ring-stage parasites was asso-
ciated with later gametocyte density, which would be 
indicative of ongoing gametocyte production. Among 
those who had persistent ring-stage parasitaemia on 
day 7 (n = 14), no significant correlation was observed 
between their ring-stage parasite density on day 7 and 
gametocyte density on days 14 and 28 (Fig. 2).

Factors associated with recurrent infections
Over the course of the 42-day follow-up, 10/73 (14%) 
participants experienced recurrent parasitaemia detect-
able by microscopy (4, 4 and 2 in the DP + MB, SP–AQ 

Table 1 Characteristics of study population

Values may not up to 100% due to missing values

IQR interquartile range

Baseline characteristics All (n = 73)

Age group in years, n (%)

 5 to < 15 55 (75)

 15 to < 25 12 (16)

 25+ 6 (8)

Weight in kg (mean ± SD) 33.4 ± 15.2

Treatment, n (%)

 SP–AQ 18 (25)

 SP–AQ + PQ 18 (25)

 DP 18 (25)

 DP + MB 19 (26)

Asexual parasite prevalence by microscopy, n (%) 43 (59)

Asexual parasite density by microscopy (per μL), median 
[IQR]

107 [0, 400]

Ring-stage parasite prevalence, n (%) 64 (89)

Ring-stage parasite density (per μL), median [IQR] 633 [7, 2028]

Gametocyte prevalence by qRT-PCR, n (%) 72 (100)

Gametocyte density by qRT-PCR (per μL), median [IQR] 57 [32, 173]

a b

Fig. 1 SBP-1 parasite prevalence (a) and density (b) between treatment arms over time. p-values were calculated using chi-squared or Fisher’s 
exact test to test differences in prevalence between ACT and non-ACT groups and Wilcoxon’s rank-sum test to test differences in parasite density. 
**p-value < 0·0001, *p < 0.05
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Table 2 Comparison of qRT-PCR SBP-1 prevalence between SP–AQ and DP treatment arms over time

PR prevalence ratio, SP–AQ sulfadoxine–pyrimethamine and amodiaquine, DP dihydroartemisinin–piperaquine
1  p-values computed using Chi-squared test or Fisher’s exact test if any cell value in 2 × 2 table was less than five

Visit SBP-1 qRT-PCR Microscopy

Prevalence, n (%) DP: SP–AQ
PR [95% CI]

p-value1 Prevalence, n (%) DP: SP–AQ
PR [95% CI]

p-value1

All SP–AQ DP All SP–AQ DP DP

Day 0 64 (89) 31 (89) 33 (89) 1.01 [0.86, 1.19] 0.93 43 (59) 24 (67) 19 (51) 0.77 [0.52, 1.14] 0.18

Day 1 54 (75) 29 (81) 25 (69) 0.86 [0.66, 1.13] 0.28 19 (26) 16 (44) 3 (8) 0.18 [0.05, 0.57] 0.0004

Day 2 45 (63) 25 (71) 20 (54) 0.76 [0.53, 1.09] 0.13 9 (12) 6 (17) 3 (8) 0.49 [0.13, 1.80] 0.27

Day 7 19 (26) 9 (25) 10 (27) 1.08 [0.50, 2.35] 0.84 1 (1) 0 (0) 1 (3) – –

Day 14 14 (19) 7 (19) 7 (19) 0.98 [0.38, 2.50] 0.96 1 (1) 1 (3) 0 (0) – –

Day 28 8 (11) 6 (17) 2 (5) 0.32 [0.07, 1.50] 0.15 1 (1) 1 (3) 0 (0) – –

Day 42 24 (33) 18 (50) 6 (17) 0.33 [0.15, 0.74] 0.0027 7 (11) 4 (11) 3 (8) 0.75 [0.18, 3.11] 0.69

Table 3 Comparison of SBP-1 parasite density between DP and SP-AQ arms

IQR interquartile range
1  Coefficient from linear regression modelling log10 SBP-1 parasite density. Models comparing parasite density at non-baseline visits adjusted for baseline SBP-1 
values. A value of 0.001 was added to all values to account for zeroes
2  Calculated by 100 * (10MD − 1)

Visit Median density (per μL) [IQR] Difference in  log10 SBP-1 Density

SP-AQ DP DP:SP-AQ
MD [95%  CI]1

DP:SP-AQ
% Difference [95%  CI]2

p-value

Day 0 891.3 [8.2, 2065.4] 330.4 [6.5, 1990.7] 0.01 [− 1.0, 1.0] 3 [− 91, 1019] 0.98

Day 1 21.2 [0.6, 212] 0.6 [0, 2.3] − 1.5 [− 2.0, − 0.9] − 97 [− 99, − 89] < 0.001

Day 2 0.6 [0, 11.2] 0.02 [0, 0.3] − 1.2 [− 1.8, − 0.6] − 94 [− 98, 76] < 0.001

Day 7 0 [0, 0.003] 0 [0, 0.07] 0.09 [− 0.4, 0.6] 24 [− 64, 320] 0.73

Day 14 0 [0, 0] 0 [0, 0] − 0.3 [− 0.8, 0.3] − 44 [− 84, 96] 0.36

Day 28 0 [0, 0] 0 [0, 0] − 0.4 [− 0.8, 0.08] − 57 [− 85, 19] 0.10

Day 42 0.03 [0, 7.1] 0 [0, 0] − 1.2 [− 2.1, − 0.3] − 94 [− 99, − 46] 0.012

a b

Fig. 2 Correlation between Day 7 SBP-1 Parasite Density and Gametocyte Density on Days 14 (a) and 28 (b). Correlation (ρ) and p-values were 
calculated only among those who had detectable levels of ring-stage parasites on day 7 using Spearman’s rank correlation coefficient
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and SP–AQ  + PQ arm, respectively). Conventional geno-
typing of polymorphic MSP-1, MSP-2 and GLURP genes 
[17] indicated that four of these were recrudescent infec-
tions, four were re-infections, and two were indetermi-
nate (Additional file 1: Table S3). Seven of the recurrent 
infections were detected on day 42 (2 indeterminate, 2 
recrudescent, and 3 reinfections) and the rest occurred 
on days 7 (1 recrudescent), 14 (1 recrudescent), and day 
28 (1 reinfection) (Table 4). SP–AQ was associated with a 
higher risk of recurrent infection compared to DP, though 
this finding did not reach statistical significance (RR for 
DP = 0.63 [95% CI 0.19, 2.03]; p = 0.44). Ring-stage para-
site densities on days 14 and 28 after treatment initiation 
were higher among individuals who subsequently expe-
rienced recurrent parasitaemia compared to those who 
did not experience recurrent infection until day 42 after 
initiation of treatment (Fig.  3) (Mann Whitney test  pday 

14 = 0.011 and  pday 28 = 0.068) (Table 4).

Discussion
In this study of young Malian males with asymptomatic 
P. falciparum carriage, ring-stage parasite mRNA was 
detected up to 42 days after anti-malarial treatment. Esti-
mated densities of post-treatment ring-stage parasites 
reduced at a more rapid rate following receipt of ACT 
compared to non-ACT, arguing against the hypothesis 
that this signal reflects dormant parasites that tolerate 
can artemisinin treatment. This could, however, also be 
obscured by differences in treatment efficacy between DP 
and SP–AQ. In this modestly sized population, few indi-
viduals experienced an episode of recurrent parasitaemia 
(n = 10), but these individuals tended to harbour higher 
ring-stage parasite densities prior to recurrence than 
those who were successfully treated.

Whilst repeated assessments of parasite density shortly 
after initiation of treatment provide the most conclusive 
evidence on (changes in) parasite responsiveness [18], 
alternative metrics are used to compare the early effects 

of anti-malarials. These include the proportion of indi-
viduals with residual parasitaemia by microscopy [19] or 
PCR [4, 8] or the concentration of the histidine rich pro-
tein-2 parasite antigen [20]. The current study, examining 
the kinetics of mRNA transcripts indicative of ring-stage 
parasitaemia following treatment [11, 21], explicitly does 
not aim to present this measure as a proxy for parasite 
clearance half-lives or evidence of reduced susceptibil-
ity of parasites to treatment. A recent study from Mali 
that was specifically designed to assess parasite clearance 
half-lives following artesunate monotherapy observed 
indications for delayed clearance in one setting [4], 
highlighting the need for monitoring of (early) parasite 
clearance following ACT. Here, the aim was to examine 
a previously reported phenomenon of persisting sbp1 
ring-stage transcripts following ACT treatment in more 
detail [7, 11]. Previous studies reported weak [7, 11] or 
absent association with the concurrent presence of game-
tocytes [21]. Along with in vitro experiments on synchro-
nized parasite material [11], this make a strong case that 
this marker is indeed specific to the detection of ring-
stage parasites. The current data further support this 
by reporting no measurable impact of gametocytocidal 
drugs on ring-stage mRNA persistence. It was hypoth-
esized that ring-stage parasites post ACT treatment are 
reflective of parasite dormancy, a phenomenon specific 
to artemisinin derivatives [14] where parasites are able 
to tolerate artemisinin treatment by entering a tempo-
rary growth-arrested state. Previous in  vitro work indi-
cated that parasites that became dormant after a single 
treatment with dihydroartemisinin were still receptive to 
other drugs [14]. The study, directly comparing ACT and 
non-ACT treatment, allowed us to test this hypothesis. 
Ring-stage parasites were present across all treatment 
arms and at higher prevalence and density following non-
ACT treatment. Whilst sample size is limited, it would 
argue against the artemisinin-specific dormancy phe-
nomenon as (only) explanation for ring-stage persistence.

Table 4 Prevalence and density of ring-stage parasites by recurrent infection type

To assess whether prior ring-stage parasite densities were associated with increased risk of recurrent infections, parasite densities for each column of recurrent 
infections excludes those that were detected before or on that day of follow-up. For example, ring-stage parasite densities for recrudescent infections on day 14 
excludes recrudescent infections that occurred on day 7 (n = 1) and day 14 (n = 1)

p-values were computed using the Mann–Whitney test. Comparisons are between recurrent infection categories to reference category (Treatment Success)

Infection Type Prevalence, n (%) Ring-stage parasite density (per μL), median [IQR]

Day 7 p-value Day 14 p-value Day 28 p-value

Treatment success 63 (86) 0 [0, 0.07] Ref 0 [0, 0] Ref 0 [0, 0] Ref

Recurrent 10 (14) 0 [0, 0] 0.99 0.08 [0, 0.4] 0.011 0 [0, 0.3] 0.068

Recrudescent 4 (5) 0 [0, 6.5] 0.57 5.6 [0,11.2] 0.12 14.2 [0, 28.4] 0.029

Re-infection 4 (5) 0 [0, 0.4] 0.92 0.08 [0, 0.2] 0.085 0 [0, 0] 0.61

Indeterminate 2 (3) 0 [0, 0] 0.40 0.3 [0, 0.7] 0.12 0.1 [0, 0.3] 0.041
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From a public health perspective, it is important to 
examine whether persisting ring-stage parasites are pre-
dictors of recrudescent infections or the source of game-
tocyte production. The current study population was 
small and as the original study objective was to assess 
gametocyte clearance and infectivity [16], not all indi-
viduals harbored asexual parasites at the start of treat-
ment. Only 10 episodes of recurrent parasitaemia were 
observed and only four of these represented recrudescent 
infections by conventional parasite genotyping. Never-
theless, ring-stage parasitaemia appeared higher prior 
to the occurrence of recurrent infection. Interestingly, 
ring-stage persistence was not only higher among recru-
descent infections but also among participants who later 
experienced apparent re-infections or recurrent parasi-
taemia that was not classifiable as either recrudescent or 
re-infection. Whether this reflects imperfect genotyping, 
with recrudescent infections being misclassified, or early 
development of re-infections in a phase when effective 
prophylaxis is expected [22], is unclear.

The longer period of follow-up in this study also 
allowed the exploration of associations of ring-stage per-
sistence with subsequent gametocyte carriage. Whilst 
data collection was not specifically designed for this, it 
was possible to relate ring-stage densities with game-
tocyte densities 7 and 14  days later, roughly the period 
needed for gametocyte production [23], and observed 
no association. The investment of parasites that persist 
under drug-pressure in either asexual multiplication 
or gametocyte production reflects a delicate balance 
[24]. A terminal investment in gametocyte production, 

sometimes hypothesized when increased gametocyte 
production is seen in partially resistant parasites [25, 26], 
was not observed here.

The study is subject to several limitations. First, it is 
recognized that sample size was small, which may have 
limited the statistical power of the study. Thus, future 
studies (e.g. pooled analyses) may be needed to confirm 
findings. Second, the study population consisted mostly 
of young males with high gametocyte densities at enroll-
ment, which may limit the generalizability of findings 
to other parasitized populations. The study population 
is not representative of individuals with uncomplicated 
malaria; the average duration of infection will have been 
longer for the current study population who all had 
blood-stage infections sufficiently long to complete the 
8–12  day maturation period of gametocytes [27]. This 
will have affected parasite stage composition at presenta-
tion, reflected by the fact that a minority of individuals 
did not have detectable asexual parasites at enrolment. 
Third, whilst three targets were included for genotyping, 
only a single baseline sample was compared with a sin-
gle day of recurrent parasitaemia. Sampling over multiple 
days after enrolment may have increased the detectabil-
ity of circulating parasite strains [8, 28]. It is, therefore, 
conceivable that more of the recurrent infections are in 
fact already present prior to treatment and could thus 
be classified as recrudescent infections. Fourth, due to 
the uneven follow-up periods and longer tailed follow-
up periods toward end of the study, it was not possible 
to assess the exact time of recurrent infection and how 
long ring-stage parasitaemia remains elevated prior to 

a b

Fig. 3 SBP-1 Parasite Density by Recurrent Infections and Days of Follow-up. a Includes participants with either recrudescent (dark red), re-infection 
(orange), or indeterminate (dark grey) infections. b Includes only participants who were successfully treated. Dark, bold lines indicate median values 
at each time point. Light, dashed lines indicate individual trajectories
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recurrence. Fifth, the markedly longer parasite clearance 
time for SP–AQ arm may reflect resistance of parasite 
populations to this drug combination, making it difficult 
to compare the impact of the artemisinin component on 
ring-stage persistence. Even longer follow-up periods 
may have uncovered whether the apparent rise in ring-
stage parasite prevalence and density towards the end of 
the study period may have resulted in more recrudescent 
infections. The last important limitation, similar to previ-
ous studies, is that the current study provides to defini-
tive evidence that mRNA reflects viable parasites. This 
would require post-treatment cultures [15].

Conclusion
In summary, the current findings indicate that ring-
stage parasites may persist at low concentrations fol-
lowing anti-malarial treatment. Whilst this parasite 
population is unlikely to reflect dormant parasites fol-
lowing artemisinin treatment, the association of ring-
stage persistence with subsequent detection of recurrent 
parasitaemia by microscopy warrants further studies to 
examine whether they may reflect viable parasite popu-
lations that may recrudesce when the concentrations of 
anti-malarials become permissive during follow-up.
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