3,728 research outputs found

    The reflection spectrum of the low-mass X-ray binary 4U 1636-53

    Get PDF
    We present 3-79 keV NuSTAR observations of the neutron star low-mass X-ray binary 4U 1636-53 in the soft, transitional and hard state. The spectra display a broad emission line at 5-10 keV. We applied several models to fit this line: A GAUSSIAN line, a relativistically broadened emission line model, KYRLINE, and two models including relativistically smeared and ionized reflection off the accretion disc with different coronal heights, RELXILL and RELXILLLP. All models fit the spectra well, however, the KYRLINE and RELXILL models yield an inclination of the accretion disc of ∼88°\sim88\degree with respect to the line of sight, which is at odds with the fact that this source shows no dips or eclipses. The RELXILLLP model, on the other hand, gives a reasonable inclination of ∼56°\sim56\degree. We discuss our results for these models in this source and the possible primary source of the hard X-rays.Comment: 9 pages, 8 figure

    The virial theorem and exact properties of density functionals for periodic systems

    Get PDF
    In the framework of density functional theory, scaling and the virial theorem are essential tools for deriving exact properties of density functionals. Preexisting mathematical difficulties in deriving the virial theorem via scaling for periodic systems are resolved via a particular scaling technique. This methodology is employed to derive universal properties of the exchange-correlation energy functional for periodic systems.Comment: Accepted in PRB(R) 201

    A re-analysis of the NuSTAR and XMM-Newton broad-band spectrum of Ser~X-1

    Get PDF
    Context: Ser X-1 is a well studied LMXB which clearly shows a broad iron line. Recently, Miller et al. (2103) have presented broad-band, high quality NuSTAR data of SerX-1.Using relativistically smeared self-consistent reflection models, they find a value of R_in close to 1.0 R_ISCO (corresponding to 6 R_g), and a low inclination angle, less than 10 deg. Aims: The aim of this paper is to probe to what extent the choice of reflection and continuum models (and uncertainties therein) can affect the conclusions about the disk parameters inferred from the reflection component. To this aim we re-analyze all the available public NuSTAR and XMM-Newton. Ser X-1 is a well studied source, its spectrum has been observed by several instruments, and is therefore one of the best sources for this study. Methods: We use slightly different continuum and reflection models with respect to those adopted in literature for this source. In particular we fit the iron line and other reflection features with self-consistent reflection models as reflionx (with a power-law illuminating continuum modified with a high energy cutoff to mimic the shape of the incident Comptonization spectrum) and rfxconv. With these models we fit NuSTAR and XMM-Newton spectra yielding consistent spectral results. Results: Our results are in line with those already found by Miller et al. (2013) but less extreme. In particular, we find the inner disk radius at about 13 R_g and an inclination angle with respect to the line of sight of about 27 deg. We conclude that, while the choice of the reflection model has little impact on the disk parameters, as soon as a self-consistent model is used, the choice of the continuum model can be important in the precise determination of the disk parameters from the reflection component. Hence broad-band X-ray spectra are highly preferable to constrain the continuum and disk parameters.Comment: 13 pages including 8 figures. Accepted for publication in A&

    Energiaa ryhmästä – Plusfactor-hyvinvointivalmennus auttoi lisäämään työelämän voimavaroja

    Get PDF
    Artikkeli kuvaa Plusfactor-hyvinvointivalmennuksen tuloksia ja kokemuksia osallistujien näkökulmasta. Osallistujat ovat asiantuntija- ja yrittäjänaisia ja he ovat osallistuneet prosessiin 7 kuukauden ajan vuonna 2016

    Evidence of a non-conservative mass transfer for XTE J0929-314

    Get PDF
    Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (> 100 Hz) pulsations in low mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims. We aim to demonstrate that a conservative mass transfer in this system will result in an X-ray luminosity that is higher than the observed, long-term averaged X-ray luminosity. Methods. Under the hypothesis of a conservative mass transfer driven by gravitational radiation, as expected for this system given the short orbital period of about 43.6 min and the low mass of the companion implied by the mass function derived from timing techniques, we calculate the expected mass transfer rate in this system and predict the long-term averaged X-ray luminosity. This is compared with the averaged, over 15 years, X-ray flux observed from the system, and a lower limit of the distance to the source is inferred. Results. This distance is shown to be > 7.4 kpc in the direction of the Galactic anticentre, implying a large height, > 1.8 kpc, of the source with respect to the Galactic plane, placing the source in an empty region of the Galaxy. We suggest that the inferred value of the distance is unlikely. (abridged)Comment: 6 pages, 2 figures, accepted for publication in Astronomy & Astrophysics (A&A

    Updating the orbital ephemeris of the dipping source XB 1254-690 and the distance to the source

    Get PDF
    XB 1254-690 is a dipping low mass X-ray binary system hosting a neutron star and showing type I X-ray bursts. We aim at obtaining more accurate orbital ephemeris and at constraining the orbital period derivative of the system for the first time. In addition, we want to better constrain the distance to the source in order to locate the system in a well defined evolutive scenario. We apply for the first time an orbital timing technique to XB 1254-690, using the arrival times of the dips present in the light curves that have been collected during 26 years of X-ray pointed observations performed from different space missions. We estimate the dip arrival times using a statistical method that weights the count-rate inside the dip with respect to the level of the persistent emission outside the dip. We fit the obtained delays as a function of the orbital cycles both with a linear and a quadratic function. We infer the orbital ephemeris of XB 1254-690 improving the accuracy of the orbital period with respect to previous estimates. We infer a mass of M2=0.42±0.04_{2}=0.42\pm 0.04 M⊙_{\odot} for the donor star, in agreement with the estimations already present in literature, assuming that the star is in thermal equilibrium while it transfers part of its mass via the inner Lagrangian point, and assuming a neutron star mass of 1.4 M⊙_{\odot}. Using these assumptions, we also constrain the distance to the source, finding a value of 7.6±0.8\pm 0.8 kpc. Finally, we discuss the evolution of the system suggesting that it is compatible with a conservative mass transfer driven by magnetic braking.Comment: 13 pages, 5 figures, accepted for publication in Research in Astronomy and Astrophysics (RAA

    Velocity and magnetic fields within 1000 AU from a massive YSO

    Get PDF
    We want to study the velocity and magnetic field morphology in the vicinity (<1000 AU) of a massive young stellar object (YSO), at very high spatial resolution (10-100 AU). We performed milli-arcsecond polarimetric observations of the strong CH3OH maser emission observed in the vicinity of an O-type YSO, in G023.01-00.41. We have combined this information with the velocity field of the CH3OH masing gas previously measured at the same angular resolution. We analyse the velocity and magnetic fields in the reference system defined by the direction of the molecular outflow and the equatorial plane of the hot molecular core at its base, as recently observed on sub-arcsecond scales. We provide a first detailed picture of the gas dynamics and magnetic field configuration within a radius of 2000 AU from a massive YSO. We have been able to reproduce the magnetic field lines for the outer regions (>600 AU) of the molecular envelope, where the magnetic field orientation shows a smooth change with the maser cloudlets position (0.2 degree/AU). Overall, the velocity field vectors well accommodate with the local, magnetic field direction, but still show an average misalignment of 30 degrees. We interpret this finding as the contribution of a turbulent velocity field of about 3.5 km/s, responsible for braking up the alignment between the velocity and magnetic field vectors. We do resolve different gas flows which develop both along the outflow axis and across the disk plane, with an average speed of 7 km/s. In the direction of the outflow axis, we establish a collimation of the gas flow, at a distance of about 1000 AU from the disk plane. In the disk region, gas appears to stream outward along the disk plane for radii greater than 500-600 AU, and inward for shorter radii.Comment: 7 pages, 4 figures, 1 table, accepted by Astronomy & Astrophysic

    Discovery of a new accreting millisecond X-ray pulsar in the globular cluster NGC 2808

    Get PDF
    We report on the discovery of coherent pulsations at a period of 2.9 ms from the X-ray transient MAXI J0911-655 in the globular cluster NGC 2808. We observed X-ray pulsations at a frequency of ∼339.97\sim339.97 Hz in three different observations of the source performed with XMM-Newton and NuSTAR during the source outburst. This newly discovered accreting millisecond pulsar is part of an ultra-compact binary system characterised by an orbital period of 44.344.3 minutes and a projected semi-major axis of ∼17.6\sim17.6 lt-ms. Based on the mass function we estimate a minimum companion mass of 0.024 M⊙_{\odot}, which assumes a neutron star mass of 1.4 M⊙_{\odot} and a maximum inclination angle of 75∘75^{\circ} (derived from the lack of eclipses and dips in the light-curve of the source). We find that the companion star's Roche-Lobe could either be filled by a hot (5×1065\times 10^{6} K) pure helium white dwarf with a 0.028 M⊙_{\odot} mass (implying i≃58∘i\simeq58^{\circ}) or an old (>5 Gyr) brown dwarf with metallicity abundances between solar/sub-solar and mass ranging in the interval 0.065−-0.085 M⊙_{\odot} (16 < ii < 21). During the outburst the broad-band energy spectra are well described by a superposition of a weak black-body component (kT∼\sim 0.5 keV) and a hard cutoff power-law with photon index Γ∼\Gamma \sim 1.7 and cut-off at a temperature kTe∼_e\sim 130 keV. Up to the latest Swift-XRT observation performed on 2016 July 19 the source has been observed in outburst for almost 150 days, which makes MAXI J0911-655 the second accreting millisecond X-ray pulsar with outburst duration longer than 100 days.Comment: 7 pages, 5 figures, accepted for publication in A&
    • …
    corecore