166 research outputs found

    Linking mechanism to function in flocking birds

    Get PDF

    Influence of behavioural and morphological group composition on pigeon flocking dynamics

    Get PDF
    Animals rely on movement to explore and exploit resources in their environment. While movement can provide energetic benefits, it also comes with energetic costs. This study examines how group phenotypic composition influences individual speed and energy expenditure during group travel in homing pigeons. We manipulated the composition of pigeon groups based on body mass and leadership rank. Our findings indicate that groups of ‘leader’ phenotypes show faster speeds and greater cohesion than ‘follower’ phenotype groups. Additionally, we show that groups of homogenous mass composition, whether all heavy or all light, were faster and expended less energy over the course of a whole flight than flocks composed of a mixture of heavy and light individuals. We highlight the importance of considering individual-level variation in social-level studies, and the interaction between individual and group-level traits in governing speed and the costs of travel

    Speed consensus and the ‘Goldilocks principle’ in flocking birds (<i>Columba livia</i>)

    Get PDF
    The evolution of group living transformed the history of animal life on earth, yielding substantial selective benefits. Yet, without overcoming fundamental challenges such as how to coordinate movements with conspecifics, animals cannot maintain cohesion, and coordination is thus a prerequisite for the evolution of sociality in nonstationary animals. Although it has been considered that animal groups must coordinate the timing and direction of movements, coordinating speed is also essential to prevent the group from splitting. We investigated speed consensus in homing pigeon, Columba livia, flocks using high-resolution GPS. Despite observable differences in average solo speed (which was positively correlated with bird mass) compromises of up to 6% from the preferred solo speed were made to reach consensus in flocks. These results match theory which suggests that groups fly at an intermediate of solo speeds, which suggests speed averaging. By virtue of minimizing extreme compromises, speed averaging can maximize selective benefits across the group, suggesting shared consensus for group speed could be ubiquitous across taxa. Nevertheless, despite group-wide advantages, contemporary flight models have suggested unequal energetic costs in favour of individuals with intermediate body mass/preferred speed (hence the ‘Goldilocks principle’)

    Overall dynamic body acceleration as an indicator of dominance in Homing Pigeons (Columba livia)

    Get PDF
    The benefits of dominance are well known and numerous, including first access to resources such as food, mates and nesting sites. Less well studied are the potential costs associated with being dominant. Here, the movement of two flocks of domestic Homing Pigeons Columba livia – measured via accelerometry loggers – was recorded over a period of 2 weeks, during which the birds were confined to their lofts. Movement was then used to calculate each individual's daily overall dynamic body acceleration (ODBA, G), which can be used as a proxy for energy expenditure. The dominance hierarchy of the two flocks was determined via group-level antagonistic interactions, and had a significantly linear structure. The most dominant bird within each flock was found to move significantly more than conspecifics – on average, c. 39% more than the individual with the next highest degree of movement – indicating a possible cost to possessing the top rank within a hierarchy. Despite the dominance hierarchy being highly linear, this was not the case for ODBA, suggesting that energy expenditure may be more reflective of a despotic hierarchy. These results show the potential for the future use of accelerometry as a tool to study the fusion of energetics and behaviour

    Self-organization of collective escape in pigeon flocks

    Get PDF
    Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-specific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons’ collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior

    Emergence of splits and collective turns in pigeon flocks under predation

    Get PDF
    Complex patterns of collective behaviour may emerge through self-organization, from local interactions among individuals in a group. To understand what behavioural rules underlie these patterns, computational models are often necessary. These rules have not yet been systematically studied for bird flocks under predation. Here, we study airborne flocks of homing pigeons attacked by a robotic falcon, combining empirical data with a species-specific computational model of collective escape. By analysing GPS trajectories of flocking individuals, we identify two new patterns of collective escape: early splits and collective turns, occurring even at large distances from the predator. To examine their formation, we extend an agent-based model of pigeons with a ‘discrete’ escape manoeuvre by a single initiator, namely a sudden turn interrupting the continuous coordinated motion of the group. Both splits and collective turns emerge from this rule. Their relative frequency depends on the angular velocity and position of the initiator in the flock: sharp turns by individuals at the periphery lead to more splits than collective turns. We confirm this association in the empirical data. Our study highlights the importance of discrete and uncoordinated manoeuvres in the collective escape of bird flocks and advocates the systematic study of their patterns across species

    First principles study of the adsorption of C60 on Si(111)

    Full text link
    The adsorption of C60 on Si(111) has been studied by means of first-principles density functional calculations. A 2x2 adatom surface reconstruction was used to simulate the terraces of the 7x7 reconstruction. The structure of several possible adsorption configurations was optimized using the ab initio atomic forces, finding good candidates for two different adsorption states observed experimentally. While the C60 molecule remains closely spherical, the silicon substrate appears quite soft, especially the adatoms, which move substantially to form extra C-Si bonds, at the expense of breaking Si-Si bonds. The structural relaxation has a much larger effect on the adsorption energies, which strongly depend on the adsorption configuration, than on the charge transfer.Comment: 4 pages with 3 postscript figures, to appear in Surf. Science. (proceedings of the European Conference on Surface Science ECOSS-19, Sept 2000

    Artificial mass loading disrupts stable social order in pigeon dominance hierarchies

    Get PDF
    Dominance hierarchies confer benefits to group members by decreasing the incidences of physical conflict, but may result in certain lower ranked individuals consistently missing out on access to resources. Here, we report a linear dominance hierarchy remaining stable over time in a closed population of birds. We show that this stability can be disrupted, however, by the artificial mass loading of birds that typically comprise the bottom 50% of the hierarchy. Mass loading causes these low-ranked birds to immediately become more aggressive and rise-up the dominance hierarchy; however, this effect was only evident in males and was absent in females. Removal of the artificial mass causes the hierarchy to return to its previous structure. This interruption of a stable hierarchy implies a strong direct link between body mass and social behaviour and suggests that an individual's personality can be altered by the artificial manipulation of body mass

    OB GYN Posters - 2019

    Get PDF
    OB GYN Posters - 2019https://scholarlycommons.libraryinfo.bhs.org/research_education/1008/thumbnail.jp
    • …
    corecore