69 research outputs found

    Enzootic Arbovirus Surveillance in Forest Habitat and Phylogenetic Characterization of Novel Isolates of Gamboa Virus in Panama

    Get PDF
    Landscape changes occurring in Panama, a country whose geographic location and climate have historically supported arbovirus transmission, prompted the hypothesis that arbovirus prevalence increases with degradation of tropical forest habitats. Investigations at four variably degraded sites revealed a diverse array of potential mosquito vectors, several of which are known vectors of arbovirus pathogens. Overall, 675 pools consisting of 25,787 mosquitoes and representing 29 species from nine genera (collected at ground and canopy height across all habitats) were screened for cytopathic viruses on Vero cells. We detected four isolates of Gamboa virus (family: Bunyaviridae; genus: Orthobunyavirus) from pools of Aedeomyia squamipennis captured at canopy level in November 2012. Phylogenetic characterization of complete genome sequences shows the new isolates to be closely related to each other with strong evidence of reassortment among the M segment of Panamanian Gamboa isolates and several other viruses of this group. At the site yielding viruses, Soberanía National Park in central Panama, 18 mosquito species were identified, and the predominant taxa included A. squamipennis, Coquillettidia nigricans, and Mansonia titillans.Landscape changes occurring in Panama, a country whose geographic location and climate have historically supported arbovirus transmission, prompted the hypothesis that arbovirus prevalence increases with degradation of tropical forest habitats. Investigations at four variably degraded sites revealed a diverse array of potential mosquito vectors, several of which are known vectors of arbovirus pathogens. Overall, 675 pools consisting of 25,787 mosquitoes and representing 29 species from nine genera (collected at ground and canopy height across all habitats) were screened for cytopathic viruses on Vero cells. We detected four isolates of Gamboa virus (family: Bunyaviridae; genus: Orthobunyavirus) from pools of Aedeomyia squamipennis captured at canopy level in November 2012. Phylogenetic characterization of complete genome sequences shows the new isolates to be closely related to each other with strong evidence of reassortment among the M segment of Panamanian Gamboa isolates and several other viruses of this group. At the site yielding viruses, Soberanía National Park in central Panama, 18 mosquito species were identified, and the predominant taxa included A. squamipennis, Coquillettidia nigricans, and Mansonia titillans

    Role of the employment status and education of mothers in the prevalence of intestinal parasitic infections in Mexican rural schoolchildren

    Get PDF
    <p><b>Background:</b> Intestinal parasitic infections are a public health problem in developing countries such as Mexico. As a result, two governmental programmes have been implemented: a) "National Deworming Campaign" and b) "Opportunities" aimed at maternal care. However, both programmes are developed separately and their impact is still unknown. We independently investigated whether a variety of socio-economic factors, including maternal education and employment levels, were associated with intestinal parasite infection in rural school children.</p> <p><b>Methods:</b> This cross-sectional study was conducted in 12 rural communities in two Mexican states. The study sites and populations were selected on the basis of the following traits: a) presence of activities by the national administration of albendazole, b) high rates of intestinal parasitism, c) little access to medical examination, and d) a population having less than 2,500 inhabitants. A total of 507 schoolchildren (mean age 8.2 years) were recruited and 1,521 stool samples collected (3 per child). Socio-economic information was obtained by an oral questionnaire. Regression modelling was used to determine the association of socio-economic indicators and intestinal parasitism.</p> <p><b>Results:</b> More than half of the schoolchildren showed poliparasitism (52%) and protozoan infections (65%). The prevalence of helminth infections was higher in children from Oaxaca (53%) than in those from Sinaloa (33%) (p < 0.0001). Giardia duodenalis and Hymenolepis nana showed a high prevalence in both states. Ascaris lumbricoides, Trichuris trichiura and Entamoeba hystolitica/dispar showed low prevalence. Children from lower-income families and with unemployed and less educated mothers showed higher risk of intestinal parasitism (odds ratio (OR) 6.0, 95% confidence interval (CI) 1.6–22.6; OR 4.5, 95% CI 2.5–8.2; OR 3.3, 95% CI 1.5–7.4 respectively). Defecation in open areas was also a high risk factor for infection (OR 2.4, 95% CI 2.0–3.0).</p> <p><b>Conclusion:</b> Intestinal parasitism remains an important public health problem in Sinaloa (north-western Mexico) and Oaxaca (south-eastern Mexico). Lower income, defecation in open areas, employment status and a lower education level of mothers were the significant factors related to these infections. We conclude that mothers should be involved in health initiatives to control intestinal parasitism in Mexico.</p&gt

    Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L.

    Get PDF
    Until recently, only a few microsatellites have been available for Cucurbita, thus their development is highly desirable. The Austrian oil-pumpkin variety Gleisdorfer Ölkürbis (C. pepo subsp. pepo) and the C. moschata cultivar Soler (Puerto Rico) were used for SSR development. SSR-enriched partial genomic libraries were established and 2,400 clones were sequenced. Of these 1,058 (44%) contained an SSR at least four repeats long. Primers were designed for 532 SSRs; 500 primer pairs produced fragments of expected size. Of these, 405 (81%) amplified polymorphic fragments in a set of 12 genotypes: three C. moschata, one C. ecuadorensis, and eight C. pepo representing all eight cultivar groups. On an average, C. pepo and C. moschata produced 3.3 alleles per primer pair, showing high inter-species transferability. There were 187 SSR markers detecting polymorphism between the USA oil-pumpkin variety “Lady Godiva” (O5) and the Italian crookneck variety “Bianco Friulano” (CN), which are the parents of our previous F2 mapping population. It has been used to construct the first published C. pepo map, containing mainly RAPD and AFLP markers. Now the updated map comprises 178 SSRs, 244 AFLPs, 230 RAPDs, five SCARs, and two morphological traits (h and B). It contains 20 linkage groups with a map density of 2.9 cM. The observed genome coverage (Co) is 86.8%

    Macronutrient modifications of optimal foraging theory: An approach using indifference curves applied to some modern foragers

    Full text link
    The use of energy (calories) as the currency to be maximized per unit time in Optimal Foraging Models is considered in light of data on several foraging groups. Observations on the Ache, Cuiva, and Yora foragers suggest men do not attempt to maximize energetic return rates, but instead often concentrate on acquiring meat resources which provide lower energetic returns. The possibility that this preference is due to the macronutrient composition of hunted and gathered foods is explored. Indifference curves are introduced as a means of modeling the tradeoff between two desirable commodities, meat (protein-lipid) and carbohydrate, and a specific indifference curve is derived using observed choices in five foraging situatiuons. This curve is used to predict the amount o meat that Mbuti foragers will trade for carbohydrate, in an attempt to test the utility of the approach .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44481/1/10745_2004_Article_BF00888091.pd

    Wild Plant Genetic Resources in North America: An Overview

    Get PDF
    North America, including Canada, Mexico, and the United States, is rich in plant species used by humans in both ancient and modern times. A select number of these have become globally important domesticated crops, including maize, beans, cotton, and sunflower. Many other native and also naturalized species have potential for use, either directly or as genetic resources for breeding agricultural crops. However, despite increasing recognition of their potential value, deficiencies in information, conservation, and access to the diversity in these plants hinder their further use. This chapter provides an overview of the agriculturally relevant wild plant resources of North America, with focus on wild relatives of globally important major crops, as well as the wild cousins of regionally and locally important domesticates. The chapter concludes by providing an overview of strategies for conserving wild plant genetic resources, including the international regulatory frameworks affecting policies to various degrees in Canada, Mexico, and the United States

    Eastern North America as an independent center of plant domestication

    No full text

    Disturbance and mosquito diversity in the lowland tropical rainforest of central Panama

    Get PDF
    The Intermediate Disturbance Hypothesis (IDH) is well-known in ecology providing an explanation for the role of disturbance in the coexistence of climax and colonist species. Here, we used the IDH as a framework to describe the role of forest disturbance in shaping the mosquito community structure, and to identify the ecological processes that increase the emergence of vector-borne disease. Mosquitoes were collected in central Panama at immature stages along linear transects in colonising, mixed and climax forest habitats, representing diferent levels of disturbance. Species were identifed taxonomically and classifed into functional categories (i.e., colonist, climax, disturbance-generalist, and rare). Using the Huisman-Olf-Fresco multi-model selection approach, IDH testing was done. We did not detect a unimodal relationship between species diversity and forest disturbance expected under the IDH; instead diversity peaked in old-growth forests. Habitat complexity and constraints are two mechanisms proposed to explain this alternative postulate. Moreover, colonist mosquito species were more likely to be involved in or capable of pathogen transmission than climax species. Vector species occurrence decreased notably in undisturbed forest settings. Old-growth forest conservation in tropical rainforests is therefore a highly-recommended solution for preventing new outbreaks of arboviral and parasitic diseases in anthropic environments.The Intermediate Disturbance Hypothesis (IDH) is well-known in ecology providing an explanation for the role of disturbance in the coexistence of climax and colonist species. Here, we used the IDH as a framework to describe the role of forest disturbance in shaping the mosquito community structure, and to identify the ecological processes that increase the emergence of vector-borne disease. Mosquitoes were collected in central Panama at immature stages along linear transects in colonising, mixed and climax forest habitats, representing diferent levels of disturbance. Species were identifed taxonomically and classifed into functional categories (i.e., colonist, climax, disturbance-generalist, and rare). Using the Huisman-Olf-Fresco multi-model selection approach, IDH testing was done. We did not detect a unimodal relationship between species diversity and forest disturbance expected under the IDH; instead diversity peaked in old-growth forests. Habitat complexity and constraints are two mechanisms proposed to explain this alternative postulate. Moreover, colonist mosquito species were more likely to be involved in or capable of pathogen transmission than climax species. Vector species occurrence decreased notably in undisturbed forest settings. Old-growth forest conservation in tropical rainforests is therefore a highly-recommended solution for preventing new outbreaks of arboviral and parasitic diseases in anthropic environments

    Starch grains on human teeth reveal early broad crop diet in northern Peru

    No full text
    Previous research indicates that the Ñanchoc Valley in northern Peru was an important locus of early and middle Holocene human settlement, and that between 9200 and 5500 14C yr B.P. the valley inhabitants adopted major crop plants such as squash (Cucurbita moschata), peanuts (Arachis sp.), and cotton (Gossypium barbadense). We report here an examination of starch grains preserved in the calculus of human teeth from these sites that provides direct evidence for the early consumption of cultivated squash and peanuts along with two other major food plants not previously detected. Starch from the seeds of Phaseolus and Inga feuillei, the flesh of Cucurbita moschata fruits, and the nuts of Arachis was routinely present on numerous teeth that date to between 8210 and 6970 14C yr B.P. Early plant diets appear to have been diverse and stable through time and were rich in cultivated foods typical of later Andean agriculture. Our data provide early archaeological evidence for Phaseolus beans and I. feuillei, an important tree crop, and indicate that effective food production systems that contributed significant dietary inputs were present in the Ñanchoc region by 8000 14C yr B.P. Starch grain studies of dental remains document plants and edible parts of them not normally preserved in archaeological records and can assume primary roles as direct indicators of ancient human diets and agriculture

    Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: Archaeological and ecological implications

    No full text
    Many angiosperms, both monocotyledons and dicotyledons, heavily impregnate their vegetative and reproductive organs with solid particles of silicon dioxide (SiO(2)) known as opaline phytoliths. The underlying mechanisms accounting for the formation of phytoliths in plants are poorly understood, however. Using wild and domesticated species in the genus Cucurbita along with their F(1) and F(2) progeny, we have demonstrated that the production of large diagnostic phytoliths in fruit rinds exhibits a one-to-one correspondence to the lignification of these structures. We propose that phytolith formation in Cucurbita fruits is primarily determined by a dominant genetic locus, called hard rind (Hr), previously shown to code for lignin deposition. If true, this evidence represents a demonstration of genetic control over phytolith production in a dicotyledon and provides considerable support to hypotheses that silica phytoliths constitute another important system of mechanical defense in plants. Our research also identifies Hr as another single locus controlling more than one important phenotypic difference between wild and domesticated plants, and establishes rind tissue cell structure and hardness under the effects of Hr as an important determinant of phytolith morphology. When recovered from pre-Columbian archaeological sites, Cucurbita phytoliths represent genetically controlled fossil markers of exploitation and domestication in this important economic genus
    corecore