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Abstract North America, including Canada, Mexico and the United States, is rich in plant 

species used by humans in both ancient and modern times. A select number of these have 

become globally important domesticated crops, including maize, beans, cotton, and sunflower. 

Many other native and also naturalized species have potential for use, either directly or as genetic 

resources for breeding agricultural crops. However, despite increasing recognition of their 

potential value, deficiencies in information, conservation, and access to the diversity in these 

plants hinder their further use. This chapter provides an overview of the agriculturally relevant 

wild plant resources of North America, with focus on wild relatives of globally important major 

crops, as well as the wild cousins of regionally and locally important domesticates. The chapter 

concludes by providing an overview of strategies for conserving wild plant genetic resources, 

including the international regulatory frameworks affecting policies to various degrees in 

Canada, Mexico and the United States.  
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1.1 Introduction  

Increasingly variable weather, shifting disease and pest pressures, soil degradation, loss of arable 

lands and water scarcity are not only on the horizon; they are already our reality. Canada and the 

United States are experiencing higher temperatures and more severe weather events, storms, and 

wildfires (Field et al. 2007). Mexico is undergoing an even greater range of climatic changes, 

including increased temperatures, especially in the north; decreased rainfall in the central 

regions; and more storms and prolonged drought during the dry season (National Intelligence 

Council 2009). Farmers in North America face a turbulent ride as they navigate the 

Anthropocene to continue to produce a considerable portion of the food, fiber and other plant-

based resources utilized around the world. 

An important strategy for preparing for these challenges is breeding plants that can 

handle the emerging abiotic and biotic challenges. Wild plant species that are closely related to 

crops are increasingly recognized as some of the most promising genetic resources that plant 

breeders can turn to in their efforts to develop cultivars adapted to more extreme conditions 

(Dempewolf and Guarino 2015; Dempewolf et al. 2017; Castañeda-Álvarez et al. 2016, Zhang et 

al. 2017). They have already proven their worth in breeding (Hajjar and Hodgkin 2007; Maxted 

et al. 2012). Ironically, however, the very wild species being promoted as essential tools in 

resolving agricultural problems are themselves vulnerable to the accelerating environmental 

changes (Jarvis et al. 2008; Lira et al. 2009; Thomas et al 2016), as well as to the persistent 

threats presented by habitat modification, pollution, invasive species, and other anthropogenic 

impacts (Brummitt et al. 2015). 

Confounding progress on conservation of these important species is the fact that 

agriculturally relevant wild plants occupy a niche that is generally neglected by agricultural 

researchers, who tend to focus their attention on a handful of crops. At the same time, 

agriculturally relevant wild species are often also overlooked by habitat and endangered species 

conservation practitioners, who focus on securing rare and threatened taxa and their ecosystems, 

rather than on safeguarding the intraspecific variation in frequently common, and often weedy, 

crop wild relatives.  

The information in this introductory chapter sets the stage for the rest of the book. We 

begin by defining essential terms and concepts. We then discuss the process of domestication, 

focusing on the crops domesticated in North America. We briefly discuss the importance of wild 

utilized species, then focus on an overview of the occurrence and conservation status of North 

American crop wild relatives of important crops. We conclude by discussing in broad strokes the 

general strategies for conserving wild plant genetic resources, including the international 

regulatory frameworks affecting policies to various degrees in the region.   

 

1.2 An agricultural perspective on North America’s wild flora 

The number of native vascular plant species in the three countries increases from north to south. 

Canada has almost 5,860 (Brouillet et al. 2010) and the United States has nearly 16,200 native 

plant species (Stein 2002). With 23,314 species (Villaseñor 2016), Mexico is a megadiverse 

country and fourth in the world for number of native vascular plants. Given such broad diversity 
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in species, it is perhaps surprising that modern day humans use a relatively small number. The 

United Nations Food and Agriculture Organization (FAO) global aggregate statistics tell us that 

just 18 or so plants contribute to 90% of the world’s calories, and that of these, only two, maize 

and sunflower, are indigenous to North America (Khoury et al. 2014). However, calories are not 

the only important component of diet. Plant species also provide protein, fat, starch, fiber, 

vitamins, minerals, phytonutrients, and flavor.  For example, chili peppers, the main cultivated 

species of which originated in North America, are the world’s most important spice by 

essentially all measures. Moreover, many plant species are used for purposes other than food. 

Examples of important North American species valued for non-food uses include cotton (as a 

textile), echinacea and American ginseng (as medicines), guayule and jojoba (for industrial 

uses), hops and vanilla (as flavorings), and rudbeckia and phlox (as ornamentals).  

Useful plants fall along a continuum that can be categorized according to the extent that 

humans have influenced their form. At one end of the continuum are domesticated species, that 

we call “crops”. Crops display a very considerable suite of changes driven by selection pressures 

placed upon them by humans, typically including the loss of natural dispersal mechanisms, larger 

sizes of seeds, fruits, or other plant parts, and the loss of dormancy. At the other end, are wild 

species that show no morphological evidence of human use. Both crops and wild species can be 

managed by humans (e.g. wild fruit trees managed in situ by burning or annual crops cultivated 

ex situ by planting and harvesting in fields), and management of wild species can lead to 

domestication (i.e. Casas et al. 2007). The focus of this book is on wild plant species with 

relevance for agriculture and other human uses, which we term “wild plant genetic resources”. 

These species include the wild plant populations from which domesticated varieties evolved 

(crop progenitors), wild species that can be used to improve contemporary crops (crop wild 

relatives), wild species that have a record of use by people (wild utilized species), and any other 

wild species with potential for future crop development (new crops).   

1.2.1 Wild Utilized Species  

Historically, wild plant species have underpinned the diets of gatherer-hunter and forager 

cultures and continue today to contribute significantly to diets, particularly in rural regions of the 

developing world (Bharucha and Pretty 2010). In Mexico, it is estimated that 5,000-7,000 wild 

plant species were used for food and other purposes (Casas et al. 1994; Caballero et al. 1998). 

North of Mexico, approximately 1,800 species have been documented as having been used by 

the indigenous peoples of North America (Moerman 2003), and Uprety et al. (2012) reported that 

546 medicinal plants were used by indigenous peoples in the boreal forests of Canada. Many of 

these wild food and medicinal species were adopted by early colonists in North America (Turner 

and von Aderkas 2012), and foraging for wild plant species to use as food or medicine continues 

to be important in North America. In recent decades, there has been growing interest in using 

wild plants, especially native species, to revegetate or restore wild lands. For example, in the 

United States, an alliance of federal and private partners has developed the National Seed 

Strategy for Rehabilitation and Restoration, driven by Federal mandates to use native plant 

materials (Plant Conservation Alliance 2015). 

1.2.2 Domestication in North America 

 

For a select group of plant species, human use has led to domestication. Larson et al. (2014) 

provides a general definition of domestication as “a selection process for adaptation to human 
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agro-ecological niches and at some point in the process, human preference.” Archaeological 

remains provide ample evidence for the domestication of North American wild progenitors of 

crop plants, beginning 12,000-8,200 BP in Mesoamerica and 8,200-4,200 BP in temperate 

regions (Larson et al. 2014).  A number of these domesticates have over time become globally 

important (Table 1.1) (Khoury et al. 2016). A few, such as marsh-elder (Iva annua L.), little 

barley (Hordeum pusillum Nutt.) and devil’s claw (Proboscidea parviflora [Wool.] Wool and 

Standi), have largely been abandoned (Smith 2006; Bretting 1986). 

 

The process of domestication is driven by the interaction of environmental factors, 

biology and human needs, which results in crops that range from plants that differ only slightly 

from their wild ancestors to species that cannot persist without human interaction (Larson et al. 

2014; Meyer et al. 2012). Mesoamerica provides a fine example of this (Lira 2009). Over 20 

plant species have been domesticated and have reached globally important food crop status, 

including maize (Zea mays L.), beans (Phaseolus L. spp.), chili pepper (Capsicum annuum L.), 

pumpkins and squashes (Cucurbita pepo L.), cotton (Gossypium hirsutum L.), avocado (Persea 

americana Mill), cacao (Theobroma cacao L.), and vanilla (Vanilla planifolia Jacks). Within this 

same region, a study limited to the Tehuacán-Cuicatlán Valley, Mexico, found that there were 

over 200 species currently in incipient stages of domestication, the result of management in 

traditional agricultural systems (Casas et al. 2007; Avendaño et al. 2009; Blancas et al. 2010 ). 

Table 1.1 provides a select list of native North American domesticated species, including the 

approximate time of start of domestication, the degree to which the crop has changed from its 

wild counterpart. The list demonstrates that a wide range of crops have been domesticated in 

North America, that crops have been domesticated from the pre-Columbian era to the present 

era, and that the domestication level of the majority of these plants tends to be medium to low.  

 

Domestication causes a number of phenotypic changes, frequently referred to as the 

domestication syndrome. Pickergill (2007) discussed morphological changes in New World 

domesticates, which generally included loss of dispersal mechanisms, increases in size and 

morphological variation, changes in plant habit, loss of seed dormancy and loss of chemical and 

mechanical protection. Changes to developmental and morphological domestication traits tend to 

occur through selection on transcriptional regulators while selection on structural genes and 

regulatory genes influence domestication traits that involve specific metabolic pathways 

(Doebley et al. 2006; Olsen and Wendel 2013). 
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Table 1.2 Selected native North America domesticates   1 

Taxon Common 

Name 

Location  Datea Domestication 

level b 

Comments/ Key references 

Agave tequilana Weber 

and other Agave species 

Agave Yucatan, Mexico 9000  Low Meyer et al. (2012); Colunga-

Garcia Marin and Zizumbo-

Villarreal (2007) 

Amaranthus caudatus L., 

A. cruentus L., and A. 

hypochondriacus L. 

Amaranth Mexico  6000 Low Pickersgill (2007); Janick 

(2013) 

Andropogon gerardii 

Vitman 

Big bluestem United States 50 Low Price et al (2012) 

Annona cherimola Mill. Cherimoya Southern Mexico 4000 Low Casas et al (2007) 

Apios Americana Medik. Indian bean Midwestern to 

Northeastern United 

States 

 

 500 Low Reynolds et al. (1990) 

Asimina triloba (L.) Dunal Pawpaw Southeastern, United 

States 

100  Low Meyer et al. (2012) 

Bouteloua dactyloides 

(Nutt.) Columbus 

Buffalograss United States 50  Low Riordan and Browning (2003) 

Canavalia ensiformis (L.) 

DC. 

Horse bean, 

jack bean 

Mexico 1050 Low Sauer and Kaplan (1969) 

Capsicum annuum L. var. 

annuum 

Chili pepper Highlands of  Mexico 6000  High Meyer et al. (2012) 

Carica papaya L. Papaya Southern Mexico 2000 Medium Meyer et al. (2012) 

Carya illinoinensis 

(Wangenh.) K. Koch 

Pecan Southeastern United 

States 

400  Medium Grauke (2016) 

Casimiroa edulis Llave & 

Lex. 

White sapote Central Mexico 5000  Medium Meyer et al. (2012)  
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Chenopodium berlandieri 

subsp. jonesianum 

Chenopod Eastern United States  3700  Low No longer cultivated/ 

Smith (2006) 

Chenopodium berlandieri 

subsp. nuttalliae 

Huauzontle Southern Mexico 700  Low Smith (2006) 

Chenopodium 

ambrosioides L. 

Epazote Mexico 100 Low Blanckaert et al. (2012) 

Cucurbita argyrosperma 

Huber subsp. 

argyrosperma 

Silver-seed 

gourd, 

green-stripe 

cushaw  

Southwest Mexico  <7000  Medium Sanjur et al (2002); Hernandez 

Bermejo and Leon (1994) 

Cucurbita pepo L. subsp. 

ovifera 

Squash  Eastern United States  8000 High Meyer et al. (2012) 

Cucurbita pepo L. subsp. 

pepo 

Pumpkin South-Central Mexico 10,000 High Meyer et al. (2012) 

Diospyros nigra (J.F. 

Gmel.) Perrier  

Black Sapote Mexico 5400  Medium Meyer et al. (2012) 

Fragaria x ananassa 

Duchesne ex Rozier 

Modern 

cultivated 

strawberry 

Eastern United States 1740  High F. virginiana parent came from 

eastern North America, 

however  hybrid was 

developed in France/ Meyer et 

al (2012) 

Echinacea purpurea (L.) 

Moench 

Purple 

coneflower 

Eastern United States 50  Low Ault (2003) 

Gossypium hirsutum L. Cotton Eastern central Mexico 5500  High Meyer et al. (2012) 

Helianthus annuus L.  Sunflower Eastern United States 4300  High Meyer et al. (2012) 

Helianthus tuberosus L. Jerusalem 

artichoke 

Eastern United States 1000  Medium Used by indigenous peoples 

but major steps in 

domestication probably by 

Europeans/ Pickersgill (2007) 
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Iva annua L. var. 

macrocarpa 

Sumpweed, 

marshelder 

Eastern United States 4000  Low No longer cultivated/ 

Meyer et al. (2012) 

Leucaena spp.  Leucaena, 

guaje 

Mexico 3000  Low Zarate (1999) 

Opuntia ficus-indica (L.) 

Mill. 

Prickly pear Central Mexico 9000 Low-Medium Griffith (2004) 

Pachyrhizus erosus L. (L.) 

Urb 

Jicama, yam 

bean 

Mexico 4400  Medium Pickersgill (2007) 

Panicum hirticaule J. 

Presl var. hirticaule 

Mexican 

panic grass 

Mexico 4000  Low Nabhan and de Wet (1984) 

Panicum virgatum  L. Switchgrass United States 100 Low Casler (2012) 

Parthenium argentatum 

Gray 

Guayule United States 50 Low Ray et al. (2005) 

Persea americana Mill. Avocado Southern Mexico 7000 Medium - High Meyer et al. (2012) 

Phaseolus acutifolius 

Gray 

Tepary Bean Central or Northern 

Mexico, Southwestern 

United States 

5000 High Blair et al. (2012) 

Phaseolus coccineus L. Runner bean Mexico 900 High Guerra-García et al. (2017) 

Phaseolus lunatus L. Sieva bean Central Western 

Mexico 

1800  High Chacón-Sánchez and Martínez-

Castillo (2017)  

Phaseolus vulgaris L. Common 

bean 

Central Mexico 7000  High Bitocchi et al. (2017) 

Phlox paniculata L. Phlox United States 50 Low Zale and Jourdan (2015) 

Physalis philadelphica 

Lam. 

Tomatillo, 

husk tomato 

Western Mexico 2750 High Zamora-Tavares et al. (2014) 



4 
 

Podophyllum peltatum L. Mayapple United States 50 Low Lata et al. (2009) 

Pouteria sapota (Jacq.) H. 

E. Moore & Stearn 

Mamey 

sapote 

Southeast Mexico >450 Medium Arias et al. (2015) 

Proboscidea parviflora 

(Wooton) Wooton & 

Standl. subsp.parviflora 

Devil’s claw Southern Arizona, 

United States and 

Northern Sonora, 

Mexico 

1700  Low Rarely cultivated/ Bretting and 

Nahban (1986) 

Psidium guajava L. Guava, 

guayaba 

Southern Mexico 5000  Medium Ladizinsky (1998); Meyers et 

al (2012) 

Rubus plicatus Weihe & 

Ness and hybrids 

blackberry North American, North 

of Mexico 

150 Medium Janick (2013) 

Rubus occidentalis L. Black 

raspberry 

North America, North 

of Mexico 

120 Medium  Sauer (1993) 

Salvia hispanica L. Chia Mexico 450 Medium Cahill (2005) 

Sassafras albidum (Nutt.) 

Nees 

Sassafras Eastern United States 500 Low Meyer et al. (2012) 

Sechium edule (Jacq.) Sw. Chayote Mexico >450 Medium  Lira Saade (1994) 

Setaria parviflora (Poir.) 

Kerguélen  

Knot-root 

fox tail, 

bitter grass 

Mexico, United States 6000 Low No longer cultivated/Austin 

(2006) 

Spondias purpurea L. Jocote, 

Purple 

Mombin, 

Hog Plum 

Southern Mexico >450 Low No archeological evidence; 

plants widely grown when 

Europeans arrived/ Piperno and 

Smith (2012) 

Spondias mombin L. Ciruela, hog 

plum 

Southern Mexico 7000  Low Piperno and Smith (2012) 
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Theobroma cacao L. Cacao Southern Mexico 1500  Medium Meyer et al. (2012) 

Vaccinium corymbosum L. Blueberry 

(highbush) 

Eastern United States 100 Medium Meyer et al. (2012) 

Vaccinium macrocarpon 

Ait. 

Cranberry Eastern United States 100 Medium Meyer et al. (2012) 

Vanilla planifolia Jacks  Mexican 

vanilla 

Southeastern Mexico 1800 Low Lubinsky et al. (2008) 

Zea mays L. subsp. mays Corn, maize Mexico 6250 High Meyer et al. (2012) 

Zizania palustris L. Wildrice 

(American) 

Northcentral United 

States 

25 Low Meyer et al. (2012) 

 a First evidence of domestication. Approximate date based on “years ago” (YA) standardized at 1950 as present.  2 
b Level of domestication: high- cannot survive in the wild; medium- some domestication traits present; low- few domestication traits 3 
present   4 

    5 

 6 

 7 
 8 
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1.2.3 Improving crops using wild genetic resources  
 

A frequent and unintended consequence of domestication is a reduction in genetic diversity, the 

consequence of genetic drift due to limited sampling of only a small subset of individuals from 

wild populations via the selection of domestication traits (Olsen and Wendel 2013). This process 

is frequently termed the “domestication bottleneck” (Olsen and Gross 2008). Domestication 

bottlenecks have been reported in many North American domesticates, such as maize (Wright et 

al. 2005), common bean (Rendón-Anaya et al. 2017), sunflower (Tang and Knapp 2003), and 

squash and pumpkin (Kates et al. 2017). Miller and Gross (2011) reviewed the literature for 22 

annual and perennial taxa and compared neutral genetic diversity between wild species and their 

domesticated counterparts. Across the following North American domesticates, the average 

proportion of total diversity retained in domesticates was 75%: common bean, lima bean, scarlet 

runner bean, chile pepper, maize, sunflower, pecan, red guaje, columnar cactus, and jocote. 

Annual domesticates retained an average of 70% of diversity, compared to perennial crops, 

which had little change (Miller and Gross 2011). Maintenance of variation in perennial crops 

was attributed to the fact that compared to annual crops, perennials have undergone fewer sexual 

cycles since domestication as a result of their long juvenile phase, clonal propagation, and a 

broad range of mating systems.  

 

The diversity studies reviewed by Miller and Gross (2011) highlight that for many crops, 

potentially useful traits have not only been left behind in their wild counterparts, due to  

sampling bias, but have also been lost during the selection process because they were not useful 

traits for de novo domestication (Fig 1.1). However, with our current efforts to improve crops 

that are more resilient to climate change, traits left behind in the wild or lost during selection,  

have the potential to provide valuable adaptations to abiotic and biotic stresses, enhance 

nutritional quality and improve a host of other attributes (Dempewolf et al. 2017; Zhang et al. 

2016).  
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Fig 1.1 Although the domestication process results in crops more suitable for human use, a 

general trade-off is the reduction in genetic diversity (relative neutral allelic diversity is 

represented by the size of bubble). Adaptive traits, the results of natural selection in diverse 

environments (colors represent ecotypes) may be left behind in wild progenitors due to sampling 

bias or be lost during selection for domestication traits 

 

1.3 Categorizing Wild Genetic Resources by their Potential for Use 

in Crop Improvement  
 

We define crop wild relatives (CWR) as “wild plants that can be used to improve crops because 

they are close enough genetically for successful gene transfer”. Harlan and de Wet (1971) 

developed the “gene pool” concept, based on the relative success of interspecific hybridization, 

to classify the usefulness of wild taxa for crop improvement. However, these types of studies 

have not been conducted for all crops, and crossing success may not be indicative of CWR 

usefulness in crop improvement (Wiersema and Leόn 2016). To counter this, Maxted (2006) 

proposed the “taxon group” concept, based on infrageneric taxonomic classifications with wild 

taxa in closer sections or other groupings within the crop genus being considered more closely 

related to the crop and thus having higher potential value. However, there are limitations to this 

approach since some genera lack such classification, and classifications based on morphology 

may overlook issues such as ploidy differences that influence crossibility. More recently, 
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Wiersema and Leόn (2016) have attempted to integrate the gene pool concept with an enhanced 

taxon group concept (i.e. phylogenetic and ploidy data are incorporated) to develop genetic 

relative classes that are descriptive of CWR with crossibility data, and predictive of CWR having 

unknown crossibility with the crop. Primary genetic relatives cross readily with the crop or can 

be predicted to cross readily based on taxonomic relationships, and produce (or can be expected 

to produce) fertile hybrids with good chromosome pairing. Secondary genetic relatives cross 

readily or can be predicted to cross readily based on taxonomic relationships, but produce (or can 

be expected to produce) partially or mostly sterile hybrids and have poor chromosome pairing; 

therefore some effort is needed to overcome barriers to the production of viable offspring. 

Tertiary genetic relatives can be crossed or can be predicted to cross based on taxonomic 

relationships, but produce (or can be expected to produce) lethal or sterile hybrids, necessitating 

special techniques (some not yet developed) for successful gene transfer. Wiersema and Leόn 

(2016) also include a fourth class, “graft stock” that includes CWR useful as rootstocks, or as 

genetic resources for breeding root-stocks.  

Genomic data are rapidly expanding our understanding of the phylogenetic relationships 

between crops and closely related species and promise to further refine attempts to classify CWR 

based on their usefulness to improve crops. Miller and Khoury discuss this potential further in 

Chapter 6 (this volume). CWR lists are available from GRIN Global (https://npgsweb.ars-

grin.gov/gringlobal/taxon/taxonomysearchcwr.aspx) (Wiersema et al. 2012) and from the 

‘Harlan and de Wet Crop Wild Relative Inventory’ (https://www.cwrdiversity.org/checklist/) 

(Vincent et al. 2013).  

 

1.4 Overview of crop wild relatives in North America 

An important first step in conservation planning is the creation of a species inventory (Maxted et 

al. 2012). National inventories of CWR have been published for a growing list of countries, 

including the United States (Khoury et al. 2013). Mexico is close to publishing an inventory, and 

Canada has identified this as a priority. At the global level, the Crop Trust (formally known as 

the Global Crop Diversity Trust, www.croptrust.org) and the Royal Botanic Garden, Kew, with 

funding from the Norwegian Government, have supported the development of the “Harlan and 

de Wet Crop Wild Relative Inventory” (Vincent et al. 2013), and a global “gap analysis” of crop 

wild relatives (Castañeda-Álvarez et al. 2016). The goal has been to develop a global inventory 

of CWR of major food crops, and to gain a better understanding of the representation of these 

CWR in the world’s major public genebanks. The inventory 

(https://www.cwrdiversity.org/checklist/) contains information on 1,667 CWR taxa related to 

173 globally important crops (see Vincent et al. [2013] for their definition of globally important 

crops). These data were used to obtain an overview of CWR found in Canada, Mexico and the 

United States. Tables 1.3, 1.4 and 1.5 summarize the number of CWR taxa by genus, taken from 

the inventory for each country. Canada, with the smallest number of globally important CWR 

taxa (84), still possesses a large number of taxa closely related to sunflower, currants, 

gooseberries, and strawberry. Mexico with 240 CWR taxa in the inventory, is not surprisingly, 

rich in CWR taxa related to maize and several beans, crops that were domesticated in that region. 

The United States has 351 CWR taxa (351) listed in this inventory. The large number may be 

reflective of efforts in the United States to better document native CWR resources. The United 



4 
 

States is rich in CWR taxa for sunflower, grape, stone fruits, and small fruits (blackberries, 

blueberry, cranberry, currants, gooseberries, raspberries and strawberry).  

There are many more CWR found in North America than those listed in the Harlan and 

de Wet Crop Wild Relative Inventory. Although these plants are not genetic resources for 

globally important food crops, they are important to support the breeding of minor and specialty 

crops, non-food crops, and for new crop development. Fig. 1.2 illustrates where 618 CWR taxa, 

including the full set of wild species mapped for the chapters of this book, are concentrated 

across North America. Regions with a large number of taxa include central and southwestern 

Mexico, the north and central parts of the eastern United States, the major mountain ranges in 

Mexico and the United States, and coastal areas. Figures 1.3, 1.4 and 1.5, and 1.6 show the 

richness of CWR species based on the standard categories of economic plants used in Wiersema 

and León (2013). Cereals and legumes are concentrated in the central and southern region of 

western Mexico (Fig. 1.3). Wild genetic resources of vegetables are concentrated in central and 

southern Mexico, and also in the northern and southeastern United States, as well as the 

Midwestern region of the United States (Fig. 1.4). Wild relatives of fruit crops are concentrated 

in the northeastern United States and southeastern Canada, as well as in the northwestern United 

States and southwestern Canada (Fig. 1.5). Wild resources of medicinal, ornamental, industrial 

and social use crops are concentrated in the central and eastern United States (Fig. 1.6)    

 
Fig 1.2 Species richness map illustrating the concentration of crop wild relatives across Canada, 

Mexico and the United States. The map displays overlapping potential distribution models for 
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618 assessed taxa, amounting to all species mapped in this book. Warmer colors indicate areas 

where greater numbers of taxa potentially occur in the same geographic localities. Full methods 

for generation of maps and occurrence data providers are listed in Appendix 1 

  

 

 
Fig 1.3 Species richness map illustrating the concentration of 81 crop wild relatives of cereals 

and legumes mapped in the chapters of this book. Warmer colors indicate areas where greater 

numbers of taxa potentially occur in the same geographic localities. Full methods for generation 

of maps and occurrence data providers are listed in Appendix 1  

 



6 
 

 
Fig 1.4 Species richness map illustrating the concentration of 158 crop wild relative species 

related to, or used as, vegetables, mapped in the chapters of this book. Warmer colors indicate 

areas where greater numbers of taxa potentially occur in the same geographic localities. Full 

methods for generation of maps and occurrence data providers are listed in Appendix 1 
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Fig 1.5 Species richness map illustrating the concentration of 190 crop wild relative species 

related to, or used as, fruits, mapped in the chapters of this book. Warmer colors indicate areas 

where greater numbers of taxa potentially occur in the same geographic localities. Full methods 

for generation of maps and occurrence data providers are listed in Appendix 1. 
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Fig 1.6 Species richness map illustrating the concentration of 256 crop wild relative species and 

wild utilized species related to, or used as, medicinal, ornamental, industrial and social use 

crops/plants, mapped in the chapters of this book. Warmer colors indicate areas where greater 

numbers of taxa potentially occur in the same geographic localities. Full methods for generation 

of maps and occurrence data providers are listed in Appendix 1 
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Table 1.3 Number of wild taxa by genus of CWR of internationally important crops, native or 

naturalized in Canada (taken from The Harlan and de Wet Crop Wild Relative Inventory [2017]) 

Genus Taxa  Genus Taxa  Genus Taxa 

 

Allium L. 2  Diplotaxis DC. 2  Lactuca L. 4 

Armoracia 

G.Gaertn. B. 

Mey. 

&Scherb. 1  

Echinochloa P. 

Beauv. 2  Malus Mill 2 

Barbarea 

W.T. Aiton 1  Eruca Mill. 1  Prunus L. 6 

Chenopodium

L. 3  Fragaria L. 11  Ribes L. 14 

Comarum L. 1  Helianthus L. 13  

Rorippa 

Scop. 8 

Corylus L. 3  Hordeum L. 4  

Setaria 

P.Beauv. 1 

Digitaria 

Haller 1  Juglans L. 1  Vitis L. 3 

 

Table 1.4 Number of wild taxa by genus of CWR of internationally important crops, native or 

naturalized in Mexico (taken from The Harlan and de Wet Crop Wild Relative Inventory [2017]) 

Genus Taxa  Genus Taxa  Genus Taxa 

 

CapsicumL. 1  Ipomoea L. 8  

Rorippa 

Scop. 5 

Chenopodium 

L. 2  Juglans L. 11  

Saccharum 

L. 2 

Cucumis L. 2  Lactuca L. 2  

Setaria 

P.Beauv.  1 

Cucurbita L. 6  Lupinus L. 1  Solanum L. 24 

Digitaria 

Haller 23  Manihot Mill. 6  

Theobroma 

L. 1 

Echinochloa 

P. Beauv. 6  Oryza L. 2  

Thespesia 

Sol. ex 

Correa 1 

Eruca Mill. 1  Panicum L. 1  Tripsacum L. 17 

Fragaria L. 4  Persea Mill. 1  

Vasconcellea 

A. St.-Hil. 1 

Gossypium L. 11  Phaseolus L. 50  Vitis L. 10 

Helianthus L. 9  Pistacia L. 2  

Xanthosoma 

Schott 6 

Hordeum L. 4  Prunus L. 4  Zea L. 5 

Ilex L. 8  Ribes L. 2    
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Table 1.5 Number of wild taxa by genus of CWR of internationally important crops, native or 

naturalized in the United States (taken from The Harlan and de Wet Crop Wild Relative 

Inventory [2017]). 

Genus Taxa  Genus Taxa  Genus Taxa 

Allium L. 7  Digitaria 

Haller 

27  Panicum L. 3 

Armoracia 

G.Gaertn. B. 

Mey. 

&Scherb  

1  Diplotaxis DC. 3  Phaseolus L. 8 

Artocarpus 

J.R. Forst. & 

G. Forst. 

1  Echinochloa P. 

Beauv. 

7  Pistacia L. 1 

Asparagus L. 4  Eruca Mill. 1  Prunus L. 23 

Avena L. 5  Fragaria L. 19  Pyrus L. 1 

Barbarea 

W.T. Aiton 

3  Gossypium L. 2  Raphanus L. 3 

Beta L. 1  Helianthus L. 67  Ribes L. 22 

Brassica L. 4  Hordeum L. 8  Rorippa 

Scop. 

23 

Capsicum L. 1  Ilex L. 7  Saccharum 

L. 

7 

Carthamus L. 1  Imperata 

Cirillo 

1  Setaria P. 

Beauv. 

2 

Chenopodium

L.  

5  Ipomoea L. 5  Sinapis L. 1 

Coincya Rouy 1  Juglans L. 7  Solanum L. 2 

Colocasia 

Schott 

1  Lactuca L. 6  Sorghum 

Moench 

1 

Comarum L. 1  Lathyrus L. 1  Thespesia  

Sol. ex 

Correa 

1 

Corylus L. 4  Lupinus L. 1  Tripsacum L. 4 
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Cucumis L. 3  Malus Mill. 6  Vicia L. 4 

Cucurbita L. 2  Manihot Mill. 3  Vitis L. 25 

Daucus L. 2  Medicago L. 2    
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Table 1.6. Native CWR of internationally important crops, that occur in Canada, Mexico and the 

United States, and which were given a high priority for further collecting based on their  limited 

representation in major ex situ collections, as identified by the Global CWR Gap Analysis 

project (Castañeda-Álvarez et al. 2016).  

     

Canada     

Chenopodium 

berlandieri Moq 

 Helianthus giganteus L.  Prunus americana Marshall 

Comarum palustre L.  Helianthus hirsutus Raf.  Prunus emarginata 

(Douglas ex Hook.) D. 

Dietr. 

Diplotaxis muralis (L.) 

DC 

 Helianthus maximiliani Schrad.  Prunus maritima Marshall 

Diplotaxis tenuifolia 

(L.) DC  

 Helianthus pauciflorus Nutt.  Prunus pumila L. 

Fragaria chiloensis 

(L.) Mill 

 Helianthus tuberosus L.  Setaria faberi Herrm. 

Fragaria virginiana 

Duchesne 

 Lactuca saligna L.  Vitis aestivalis Michx. 

Helianthus divaricatus 

L. 

 Malus fusca (Raf.) C.K. 

Schneid. 

  

     

Mexico     

Capsicum annuum L.  Ipomoea ramosissima (Poiret) 

Choisy 

Phaseolus longiplacentifer 

Freytag 

Chenopodium 

berlandieri Moq. 

 Ipomoea tiliacea (Willdenow) 

Choisy in D.C. 

Prunus emarginata 

(Douglas) Eaton 

Cucurbita lundelliana 

L.H.Bailey 

 Lactuca saligna L.  Prunus minutiflora Engelm. 

ex A. Gray 

Cucurbita okeechobeensis 

(Small) L.H.Bailey 

Manihot aesculifolia Pohl  Setaria faberi R. A. W. 

Herrm. 

Cucurbita pepo L.  Manihot angustiloba (Torr.) 

Mll.Arg. 

Solanum clarum Correll 

Gossypium harknessii 

Brandegee 

 Manihot chlorosticta Standl. & 

Goldman 

Solanum hintonii Correll 

Gossypium turneri 

Fryxell 

 Manihot davisiae Croizat  Solanum hjertingii Hawkes 

Helianthus hirsutus 

Raf. 

 Manihot rubricaulis I.M.Johnst.  Solanum hougasii Correll 

Helianthus niveus 

(Benth.) Brandegee 

Manihot walkerae Croizat  Theobroma cacao L. 

Ipomoea batatas (L.) 

Lam. 

 Oryza alta Swallen  Vasconcellea cauliflora  

Ipomoea cordatotriloba 

Dennstedt 

Oryza latifolia Desv.  Tripsacum dactyloides (L.) 

L. 
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Ipomoea leucantha 

Jacquin 

 Panicum stramineum Hitchc. & 

Chase 

Zea diploperennis H. H. 

Iltis et al. 

Ipomoea littoralis 

Blume 

 Phaseolus albescens McVaugh ex 

Ramirez-Delgadillo & A. Delgado 

Zea luxurians (Durieu & 

Asch.) R. M. Bird 

     

United States     

Allium ampeloprasum L.  Helianthus debilis Nutt. vestitus  Panicum nephelophilum 

Gaudich.  

Artocarpus 

mariannensis Tr 

 Helianthus deserticola Heiser   Panicum stramineum 

Hitchc. & Chase  

Asparagus horridus L.   Helianthus divaricatus L.   Prunus americana Marshall  

Asparagus officinalis 

L.  

 Helianthus giganteus L.   Prunus cerasifera Ehrh.  

Avena hybrida Peterm.   Helianthus maximiliani Schrad.   Prunus emarginata 

(Douglas) Eaton  

Avena trichophylla K. 

Koch  

 Helianthus niveus (Benth.) 

Brandegee  

Prunus maritima Marshall  

Capsicum annuum L. 

glabriusculum 

Helianthus niveus (Benth.) 

Brandegee canescens 

Prunus minutiflora Engelm. 

ex A. Gray  

Carthamus leucocaulos 

Sm.  

 Helianthus pauciflorus Nutt. 

pauciflorus 

Prunus pumila L.  

Chenopodium 

berlandieri Moq.  

 Helianthus tuberosus L.   Prunus pumila L. besseyi 

Comarum palustre L.   Ipomoea cordatotriloba Dennstedt  Prunus rivularis Scheele  

Cucurbita okeechobeensis 

(Small) L.H. Bailey 

subsp. okeechobeensis    

Ipomoea leucantha Jacquin   Pyrus cordata Desv.  

Daucus carota L.   Ipomoea littoralis Blume   Tripsacum dactyloides (L.) 

L.  

Daucus carota L. 

subsp. gummifer 

(Syme) Hook. f. 

 Ipomoea tenuissima Choisy   Tripsacum dactyloides (L.) 

L. var. dactyloides 

Fragaria chiloensis 

(L.) Mill.  

 Lactuca saligna L.   Vitis aestivalis Michx. 

aestivalis 

Fragaria chiloensis 

(L.) Mill. subsp. lucida 

(E. Vilm. ex Gay) 

Staudt 

 Malus fusca (Raf.) C.K. 

Schneid.  

 Vitis californica Benth.  

Fragaria chiloensis (L.) 

Mill. subsp. pacifica 

Staudt 

Manihot angustiloba (Torr.) 

Mll.Arg.  

Vitis cinerea (Engelm.) 

Engelm. ex Millardet 

cinerea 

Fragaria virginiana 

Mill. subsp. glauca (S. 

Watson) Staudt 

 Manihot davisiae Croizat   Vitis cinerea (Engelm.) 

Engelm. ex Millardet helleri 
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Fragaria virginiana Mill. 

subsp. platypetala (Rydb.) 

Staudt 

Manihot walkerae Croizat   Vitis labrusca L.  

Fragaria virginiana 

Mill. subsp. virginiana 

 Medicago sativa L. falcata  Vitis monticola Buckley  

Helianthus debilis Nutt. 

cucumerifolius (Torr. & 

A. Gray) Heiser 

Panicum fauriei Hitchc.   Vitis mustangensis Buckley  
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1.5 The value of North American crop wild relatives  

Utilization of CWR in plant breeding has steadily increased over the past decades, providing 

improved pest and disease resistance, tolerance to abiotic stresses, increased yield, novel 

cytoplasms, and quality traits (Hajjar and Hodgkin, 2007; Maxted et al. 2012; Dempewolf et al. 

2017). Advances in breeding, particularly through modern molecular approaches, promise to 

further facilitate the use of wild germplasm (Zhang et al. 2015; Brozynska et al 2016; 

Dempewolf  et al. 2017; Prohens et al 2017).  

Well-documented examples exist for the use of North American native CWR. For 

example, native germplasm was instrumental in developing modern varieties of plum, blueberry 

and pecan in the United States (Greene 2012). Perhaps the most important North American CWR 

utilized since modern breeding began have been the sunflower wild relatives. Dempewolf et al. 

(2017) identified sunflower as having the most “CWR breeding use” citations among major 

crops in a recent literature review. The annual economic contribution of sunflower CWR has 

been estimated between $267 to $384 million USD (Seiler et al. 2017). Most of the value comes 

from the use of the PET1 cytoplasm from Helianthus petiolaris (which facilitates the generation 

of hybrid sunflower varieties), as well as disease resistance genes, abiotic salt tolerance, and 

resistance to herbicides (Dempewolf et al. 2017).  

 

1.6 Conservation of North American wild plant genetic resources 

An estimated one out of every five plant species worldwide is threatened by habitat loss or 

modification, agricultural modernization, pollution, over-exploitation, invasive species, and/or 

climate change (Brummitt et al. 2015). In the United States, 32% of the native flora has been 

identified as threatened by NatureServe (Havens et al. 2014). Khoury et al. (2013) compiled the 

conservation status of 3,512 taxa in the United States inventory of CWR based on NatureServe 

rankings. Five taxa were known or presumed extinct in the wild; 4% were ranked as “globally 

critically imperiled” or “imperiled” and almost 6% were “vulnerable” (See 

http://explorer.natureserve.org/ranking.htm for definition of rankings). Sixty-two taxa were also 

listed as endangered under the Endangered Species Act (7 U.S.C. § 136, 16 U.S.C. § 1531 et 

seq.). The CWR identified as high priority to collect in the list compiled by Castañeda-Álvarez et 

al. (2016) included the following North American threatened taxa (based on NatureServe 

ranking):  Cucurbita okeechobeensis subsp. martinezii (L. H. Bailey) T. C. Andres & Nabhan ex 

T. W. Walters & D. S. Decker, Cucurbita okeechobeensis (Small) L. H. Bailey subsp. 

okeechobeensis, Fragaria chiloensis subsp. sandwicensis (Decne.) Staudt, Helianthus niveus 

subsp. tephrodes (A. Gray) Heiser, and Manihot walkerae Croizat.   

Threat assessments have also been performed by the International Union for 

Conservation of Nature (IUCN). From the IUCN Red List for Canada, Mexico and the United 

States (IUCN 2017), the following taxa listed in Castañeda-Álvarez et al. (2016) were assigned: 

 Near Threatened: Helianthus exilis A. Gray. 

 Vulnerable: Helianthus anomalus S. F. Blake   

 Data Deficient (i.e. insufficient data to make an assessment): Carica papaya L., 

Cucurbita okeechobeensis (Small) L. H. Bailey, Helianthus arizonensis R.C. Jacks., H. 

http://explorer.natureserve.org/ranking.htm
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deserticola Heiser, H. niveus (Benth.) Brandegee, Prunus harvardii (W. Wight) S. C. 

Mason, P. maritima Marshall, P. rivularis Scheele 

The large discrepancy between number of threatened species in the United States 

identified by NatureServe (5935 species) and the IUCN Red List (273 species), pointed out by 

Havens et al. (2014), underscores the need for more information on species distributions and 

rarity, especially for wild plant genetic resources and reflects results based on different 

methodologies (See Frances et al,. [2018], Chapter 7 for description of threat assessment 

methods). 

1.6.1 Strategies for conserving wild plant genetic resources  

The ideal management of wild plant genetic resources (i.e., crop progenitors, crop wild relatives, 

wild utilized species, and wild species with potential new use) involves a complementary 

approach incorporating both in situ (conserved “in the wild”) and ex situ (conserved outside of 

the wild in seed or field banks) conservation.  

The community of researchers and practitioners conserving and managing biodiversity 

under in situ conditions has historically viewed ex situ conservation as supplementary (Havens et 

al. 2014). The common philosophy embraced by this community is reflected by Ralston (2004), 

who wrote: “a plant is what it is where it is, in situ. In the wild, both the individual plants and the 

species…are embedded in ecosystems.” In contrast, the community that focuses on conserving 

wild genetic resources for use in crop breeding has prioritized ex situ conservation because 

access and availability are important considerations. However, there is general and increasing 

agreement on both sides that the most effective conservation strategies incorporate the strengths 

of both aspects.  

In situ conservation allows the natural trajectory of evolution to occur; plant species 

continue to co-evolve with pests and pathogens and adapt to changing climates. Furthermore, it 

is sometimes easier to recollect from an in situ population than produce additional wild seed 

under ex situ conditions (a process called regeneration).  It can also be cost effective to conserve 

wild genetic resources in situ, especially if many different taxa already occur in a protected area.  

On the other hand, ex situ conservation allows rapid access to germplasm needed by the 

research community. An inevitable limitation of the ex situ strategy for genetic diversity 

conservation is that it captures a single genetic snapshot, reflecting a wild population’s 

adaptation to the biotic and abiotic conditions when and where it was collected. The degree to 

which the sample reflects the genetic structure of the original population depends on the 

adequacy of the sampling. In addition, the assumption that subsequent ex situ seed increases 

represent the original sample is dependent on minimizing genetic change (through genetic drift 

or selection) during the regeneration process. The genetic resources community is acutely aware 

of the challenges of ex situ conservation and attempts to follow protocols outlined in a body of 

literature guided by the mantra “sample population diversity and maintain genetic integrity” (i.e., 

Hoban and Schlarbaum 2014; Dulloo et al. 2008; FAO 2014). Although the static nature of ex 

situ conservation has drawbacks, there is no question that easily accessible ex situ samples 

provide the means to discover and use valuable diversity and provide backup to in situ 

populations that may be vulnerable to a myriad of threats. Ex situ accessions have been shown to 

preserve alleles that were subsequently lost in in situ populations from which they were collected 
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(Greene et al. 2014).  

Conservation of wild plant genetic resources requires the cooperation of many players: 

different federal, state and tribal agencies, non-governmental organizations including botanical 

gardens and academic institutes, and, increasingly, citizen scientists and other local groups 

(Havens et al. 2014). Sometimes the emphasis on making wild genetic resources available for 

use can conflict with resource management directives aimed at controlling over-harvesting or 

maintaining the genetic integrity of source populations. For example, the United States National 

Plant Germplasm System has been incorporating germplasm from the Bureau of Land 

Management-led Seeds of Success (SOS) program, which has been collecting wild species in the 

United States to support restoration activities. Information on SOS accessions is entered in the 

GRIN-Global database (https://www.ars-grin.gov/npgs), and seed is available to researchers. 

However, the location where samples were originally collected is not readily available in GRIN-

Global due to land managers’ concerns that map coordinates will lead to overharvesting of wild 

populations by unscrupulous collectors. This lack of information has been a stumbling block for 

companies seeking germplasm adapted to specific areas for the breeding of native species used 

in restoration. A solution being explored is making accessions searchable by seed transfer zone, 

which is obtained using the original locations’ map coordinates that are themselves not shared. 

This example illustrates the importance of recognizing that although the modus operandi of 

various partners may not match, open discussion can lead to innovative solutions that meet 

different organizational missions while moving native plant conservation objectives forward. 

 

1.6.2 International regulatory frameworks for conserving plant genetic resources 

The acquisition, distribution and use of plant genetic resources are regulated at various levels in 

Canada, Mexico, and the United States.  Each country has its own national and state/provincial 

regulatory frameworks, as do certain indigenous groups within these countries. The specific 

regulations in all three countries are also influenced by international agreements, particularly the 

three described in the following sections.    

1.6.2.1 The Convention on Biological Diversity (CBD) 

The CBD is an international treaty with the three main goals: conservation of biodiversity, 

sustainable use of its components, and fair and equitable sharing of the benefits arising from the 

utilization of genetic resources. It is the foundation for the current international framework on 

access and benefit sharing of all biodiversity, including plant genetic resources. The Convention 

was opened for signature at the United Nations Conference on Environment and Development 

(the “Earth Summit”) in Rio de Janeiro in 1992 and entered into force in December 1993. As of 

2017, the CBD has 196 parties, including Canada and Mexico. While the United States signed 

the Convention in 1993, as of late 2017 it has not ratified the agreement.   

1.6.2.2 The Nagoya Protocol  

The Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of 

Benefits Arising from their Utilization elaborates on the provisions of the CBD on access to 

genetic resources and benefit sharing (Moore and Williams 2011).  It was adopted by the 

Conference of the Parties to the CBD in 2010 in Nagoya, Japan and entered into force on 12 

https://www.ars-grin.gov/npgs
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October 2014. The Protocol aims to establish clear requirements and procedures for accessing 

genetic resources and establishing mutually agreed terms in each Contracting Party.  It obligates 

Contracting Parties to provide for the issuance of a permit or its equivalent when access is 

granted as evidence of the granting of prior informed consent, if required, and the establishment 

of mutually agreed terms.  The benefits to be shared may be monetary, such as royalties, or non-

monetary, such as sharing of research results. The Protocol has provisions concerning the 

traditional knowledge associated with genetic resources held by indigenous and local 

communities, as well as the rights of these communities to grant access to certain genetic 

resources.  

The Access and Benefit-sharing Clearing-House (https://absch.cbd.int/) set up by the 

Protocol shares relevant information, such as on domestic regulatory access and benefit sharing 

requirements and on national focal points and national authorities. Parties are to establish 

checkpoints in their country to collect or receive information regarding whether genetic 

resources being utilized have been acquired in compliance with relevant laws on access and 

benefit sharing. The Protocol recognizes that other international instruments addressing access 

and benefit sharing, such as the International Treaty on Plant Genetic Resources for Food and 

Agriculture (Plant Treaty) may apply to specific genetic resources and determine the terms in 

certain cases. Of the three countries covered in this book, only Mexico has ratified the Protocol. 

1.6.2.3 International Treaty on Plant Genetic Resources for Food and Agriculture (Plant 

Treaty) 

The Plant Treaty is a legally binding international agreement adopted by the Conference of the 

Food and Agriculture Organization of the UN in 2001 and entered into force in 2004. Its 

objectives are the conservation and sustainable use of plant genetic resources for food and 

agriculture, and the fair and equitable sharing of the benefits arising from their use, for 

sustainable agriculture and food security. Recognizing that many countries need more 

straightforward access to agricultural genetic resources occurring outside their borders than is 

provided by the CBD, the Plant Treaty established a multilateral system (MLS) for access and 

benefit sharing to facilitate exchange of genetic resources of 64 internationally important crops 

and forages and (most of) their wild relatives for the purpose of conservation, research, breeding, 

and training for food and agriculture.  

Material in the MLS is transferred on terms specified in a standard material transfer 

agreement (SMTA) that was adopted by the Governing Body of the Treaty in 2006. The terms 

prohibit recipients from claiming intellectual property rights on “genetic parts and components, 

in the form received” that limit access to these resources. The Treaty states that benefits arising 

from use of the materials in the MLS should be shared through both non-monetary and monetary 

mechanisms. Non-monetary mechanisms include the exchange of information, capacity building, 

and transfer of technology. It also establishes a mechanism for monetary benefit-sharing in the 

form of a benefit-sharing fund. A recipient of germplasm who commercializes a product that 

incorporates materials from the MLS and is not available for further research and breeding is 

required to make mandatory payments to the benefit-sharing fund. If the product is available for 

research and breeding, the payment is voluntary. These funds are to be used to support projects 

that promote conservation of plant genetic resources, particularly by farmers in developing 

countries. Canada and the United States are Parties to the Plant Treaty. 

https://absch.cbd.int/
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Table 1.7 The status of participation of Canada, Mexico and the United States in international 

agreements on access and benefit sharing of plant genetic resources 

Country Party to CBD Party to Nagoya 

Protocol 

Party to Plant 

Treaty 

Canada yes no yes 

Mexico yes yes no 

United States no no yes 

 

The three countries thus differ in their participation in the international agreements that 

most affect access and benefit sharing for plant genetic resources (Table 1.7).  The national 

genebanks in Canada and the United States have placed their public collections into the MLS 

established by the Plant Treaty and germplasm is distributed internationally under the terms of 

the SMTA.  A legal framework for international distribution of germplasm from the national 

collections in Mexico has not yet been established (see Chapter 3).    

Access to in situ genetic resources in the three countries depends on the existence of 

national legislation. The United States is not a Party to the CBD and does not require national 

level collection permits: access requirements are determined by individual landowners or 

managers, including federal, state, county and tribal entities.  Both Mexico and Canada are 

parties to the CBD, and thus permission for access is obtained from the designated national 

authorities to the CBD.  Mexico provides national level collecting permits, which are obtained 

from the Ministry of the Environment and Natural Resources (SEMARNAT). The National 

Focal Point for the CBD and Nagoya Protocol in Canada is in the National Wildlife Section of 

the Canadian Wildlife Service, Department of Environment and Climate Change Canada. There 

is currently no specific legislation in place in Canada to govern access to genetic resources, 

although working groups at the federal, provincial, and territorial levels are considering this 

issue.   

1.6.3 Global and Regional Targets and Networks to Conserve Wild Plant Genetic Resources 

Growing awareness of the value of crop wild relatives to food security and recognition of the 

increasing threats to these genetic resources has led to the explicit targeting of the comprehensive 

conservation of wild relatives by 2020 within the highest-level global agreements on agriculture, 

development, and conservation, including the United Nations Sustainable Development Goals 

(SDG). Target 2.5 of the SDGs states “by 2020 maintain genetic diversity of seeds, cultivated 

plants, farmed and domesticated animals and their related wild species, including through 

soundly managed and diversified seed and plant banks at national, regional and international 

levels, and ensure access to and fair and equitable sharing of benefits arising from the utilization 

of genetic resources and associated traditional knowledge as internationally agreed”. Similarly, 

the CBD’s Aichi Biodiversity Target 13 states that “By 2020, the loss of genetic diversity of 

cultivated plants and farmed and domesticated animals and of wild relatives, including other 

socio-economically as well as culturally valuable species is maintained and strategies have been 

developed and implemented for minimizing genetic erosion and safeguarding their genetic 

diversity”.   
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The public genetic resources conservation systems in all three North American countries 

are working on strengthening an already long history of collaboration. Under the umbrella of the 

Inter-American Institute for Cooperation on Agriculture (IICA; http://www.iica.int/en)’s North 

American regional network for agricultural research (PROCINORTE; www.procinorte.net), the 

NORGEN task force brings together representatives from Canada, Mexico and the United States 

to coordinate  cooperation and exchange of technical and scientific knowledge in the area of 

managing and preserving genetic resources.  Representatives of the member countries of 

NORGEN meet yearly and cooperate in activities and knowledge sharing throughout the year.  

Activities have included participation in development of the 2006 Americas Hemispheric 

Conservation Strategy for Plant Genetic Resources for Food and Agriculture in the Americas 

(https://www.croptrust.org/wp-

content/uploads/2014/12/AMS_Hemispheric_FINAL_210208.pdf),  several workshops on 

GRIN-Global attended by Mexican and Canadian curators and facilitated by ARS experts, 

promotion of strategies for in situ conservation by farmers in Mexico, an in vitro and 

cryopreservation workshop to increase capacity at the Mexico national genebank, and collection 

and evaluation of germplasm (IICA 2015). A workshop on conservation of ancestral genetic 

resources was held in Quebec, Canada in 2016.   

 

1.7 Conclusion 

While many of the targets set forth in the international agreements on sustainable development 

and biodiversity conservation allow for a decade or more to finish the job, conservation of 

genetic resources is much more urgently prioritized. This is due to the fact that extinction is a 

permanent and irreversible loss. It may also be because these targets are entirely technically 

feasible in that given adequate resources, the scientific ability to complete the task already exists. 

There is no technical reason why North American wild plant genetic resources should be 

inaccessible to plant breeders and scientists, much less become extinct.  

Linkages between the agricultural research and natural resources conservation 

communities are also growing stronger, giving some hope that these connections will enable the 

communities to overcome the traditional economic, mandate, and legislative divides between 

them. The national laws protecting wild species, although currently deficient in their coverage of 

all vulnerable North American crop wild relatives, do provide a legislative framework for 

enhancing their conservation. Thus, although we have a long way to go, the essential 

institutional, policy, and scientific foundations not only exist in North America, but also are 

being actively improved. There is reason to believe that the continent can be successful in its 

ambitious efforts to comprehensively conserve and make available its wild plant genetic 

resources. We hope that this book contributes to the foundational knowledge needed to advance 

this worthy agenda.  
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