1,127 research outputs found
Combining ability analysis in near homozygous lines of okra [Abelmoschus esculentus (L.) Moench] for yield and yield attributing parameters
Line × tester analysis was carried out with the objective of identifying the good combiners and to decide the breeding strategies for developing potential and productive genotypes or cultivars. Parents and hybrids differed significantly for GCA and SCA effects for all the characters respectively. Specific combining ability (SCA) variance was higher than the general combining ability (GCA) variance which shows the predominance of non-additive gene action for the improvement of all the characters studied. The parents and crosses having highest and significant GCA and SCA effects viz., KO-18 (13.69), KO-6 (9.54) and KO-2 × Parbhani Kranti (19.28) for plant height; KO-12 (0.34), KO-14 (0.19) and KO-5 × V5 (0.60) for number of branches per plant; KO-14 (-0.66) and KO-15 × Arka Anamika(-1.66) for days to first flowering; KO-1(1.10), Arka Anamika (0.46) and KO-9 × VRO-5 (3.28) for fruit length; KO-7 (7.91), VRO-5(1.68) and KO-18 × VRO-6 (8.64) for average fruit weight; KO-2 (1.18) and KO-17 × Arka Anamika (2.80) for number of fruits per plant; KO-9(0.05), VRO-6 (0.01) and KO-11 × VRO-6 (0.10) for total yield per plant were identified as good general and specific combiners. The results establish the worth of heterosis breeding for effective usage of non-additive genetic variance in okra
Recommended from our members
Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity.
Death due to sepsis remains a persistent threat to critically ill patients confined to the intensive care unit and is characterized by colonization with multi-drug-resistant healthcare-associated pathogens. Here we report that sepsis in mice caused by a defined four-member pathogen community isolated from a patient with lethal sepsis is associated with the systemic suppression of key elements of the host transcriptome required for pathogen clearance and decreased butyrate expression. More specifically, these pathogens directly suppress interferon regulatory factor 3. Fecal microbiota transplant (FMT) reverses the course of otherwise lethal sepsis by enhancing pathogen clearance via the restoration of host immunity in an interferon regulatory factor 3-dependent manner. This protective effect is linked to the expansion of butyrate-producing Bacteroidetes. Taken together these results suggest that fecal microbiota transplantation may be a treatment option in sepsis associated with immunosuppression
Characterization of cytosolic phosphoglucoisomerase from immature wheat (Triticum aestivum L.) endosperm
Phosphoglucoisomerase from cytosol of immature wheat endosperm was purified 650-fold by ammonium sulphate fractionation, isopropyl alcohol precipitation, DEAE-cellulose chromatography and gel filtration through Sepharose CL-6B. The enzyme, with a molecular weight of about 130,000, exhibited maximum activity at pH 8.1. It showed typical hyperbolic kinetics with both fructose 6-P and glucose 6-P with Km of 0.18 mM and 0.44mM respectively. On either side of the optimum pH, the enzyme had lower affinity for the substrates. Using glucose 6-P as the substrate, the equilibrium was reached at 27% fructose 6-P and 73% glucose 6-P with an equilibrium constant of 2.7. The ΔF' calculated from the apparent equilibrium constant was +597 cal mol-1. The activation energy calculated from the Arrhenius plot was 5500 cal mol-1. The enzyme was completely inhibited by ribose 5-P, ribulose 5-P and 6-phosphogluconate, with Ki values of 0.17, 0.25 and 0.14 mM respectively. The probable role of the enzyme in starch biosynthesis is discussed
Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.
Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut
To study the outcome of previous one cesarean pregnancies in a rural tertiary center of Haryana, India
Background: Rising rates of caesarean section is a matter of great concern and TOLAC is an attractive alternative. Analysing outcome of previous one caesarean pregnancies will provide an insight for reducing the caesarean rates and formulating protocols and policies for TOLAC.Methods: A retrospective study of patients of previous one caesarean pregnancy was done from February 2015 to January 2016 and 3 groups were made, ERCS group, failed TOLAC group and successful TOLAC group. The rates of elective repeat caesarean, failed TOLAC, successful TOLAC, maternal complications, neonatal morbidity and mortality in all three groups were studied.Results: There were 5177 total deliveries with 488 (9.43%) previous one caesarean pregnancies. Out of 488 patients 161 (33%) underwent elective repeat caesarean and 327 (67%) underwent trial of labour. Out of 327 patients 234 (71.56%) had a successful TOLAC and 93 (28.44%) had failed TOLAC. Breech (23%) followed by foetal distress (20%) were the most common indications of previous caesarean. Commonest indication of elective repeat caesarean was short interval (33%) and that of failed TOLAC was foetal distress (38.7%) followed by failed induction (23.6%). There were 4 morbidly adherent placentas (0.82%), 1 scar rupture, 3 scar dehiscence, no maternal mortality and 10 neonatal deaths.Conclusions: Previous one caesarean section is not only a risk factor for repeat caesareans and complications like morbidly adherent placenta, uterine rupture but also a financial burden on health facilities. Encouraging the patients for trial of labour and emphasizing the usage of contraception is the need of the hour
New species of the parasites of the Rhodes - grass scale from the Indian union
This article does not have an abstract
Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria
Background:
Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria.
Methodology/Principal Findings:
In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology.
Conclusions/Significance:
These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4′,5′-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria.National Institutes of Health (U.S.) (grant R01GM59903)National Institutes of Health (U.S.) (grant R01AI050875)Netherlands Organization for Scientific Research (VICI grant 700.56.442)Massachusetts Technology Transfer Center (MTTC)National Institutes of Health (U.S.) (grant 5U54MH084690-02
- …
