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We propose a tomographic method for determining the Wigner function of a short pulse, which may be used
with a wide class of optical systems.
1. INTRODUCTION
The Wigner distribution function, which was first intro-
duced in the study of quantum statistical mechanics,1 has
many applications in optics. For example, an analog of
the Wigner function and some of its variants play a cen-
tral role in the theoretical foundations of radiometry.2 In
the analysis of nonstationary processes, the Wigner dis-
tribution has been called the master-form signal because
all the measurable quantities pertaining to that process
can readily be derived from it.3 The Wigner distribution
has also proved to be useful for characterizing ultrashort
pulses.

A new method, called chronocyclic tomography, for
measuring the Wigner function for short pulses was re-
cently reported.4 This method, which bears a close anal-
ogy to tomographic imaging methods, essentially relies on
designing an optical system that can produce an output
pulse that is a fractional Fourier transform5–9 of the input
pulse. The design of such optical systems, which consist
of optical fibers and chirp modulators, is greatly facili-
tated by the use of the well-known analogy with beam
propagation in paraxial optical systems that consist of
thin lenses separated by free space.10–13 However, in
this context the class of optical systems that can produce
a fractional Fourier transform is somewhat restricted.
Therefore it would be advantageous if one were able to
obtain the same information from a wider, more general,
and more easily realizable class of optical systems. It is
this problem that we address in the present paper.

2. PULSE PROPAGATION IN
DISPERSIVE FIBERS
In this section, we briefly describe the analysis of pulse
propagation in optical systems that consist of dispersive
optical fibers and chirp modulators. There is a close
analogy between pulses in such optical systems and the
propagation of beams in paraxial optical systems that con-
sist of thin lenses separated by free space. This analogy
is discussed in detail in Refs. 10–13.

Consider a pulse propagating in the positive z direction
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in a one-dimensional dispersive medium, such as an opti-
cal fiber. Let Esz, td denote a cartesian component of the
electric-field vector of the pulse at position z and time t.
The Fourier transform of Esz, td defined by the formula

Ẽsz, vd ­
1

2p

Z `

2`

Esz, tdexpsivtddt , (1)

where v is the frequency, will obey the differential
equation "

≠2

≠z2 1 ksvd2

#
Ẽsz, vd ­ 0 . (2)

In this equation, ksvd is the wave number for propagation
in the medium; ksvd depends on the frequency in a man-
ner appropriate to the particular medium. The solution
to Eq. (2) is

Ẽsz, vd ­ Asvdexpfiksvdzg 1 Bsvdexpf2iksvdzg , (3)

where Asvd and Bsvd are functions that depend on the
boundary conditions. The first term on the right-hand
side of Eq. (3) represents a wave propagating in the posi-
tive z direction, while the second term represents a wave
propagating in the negative z direction. We assume that
there is no component of the field traveling in the nega-
tive z direction, and hence Bsvd ; 0. Equation (1) and
(3) then imply that

Esz, td ­
Z `

2`

Asvdexpfiksvdz 2 ivtgdv . (4)

We assume that the function Asvd is centered on some
mean frequency v0 with effective width Dv. Thus we
will make the substitution Asvd ­ asv 2 v0d, where asvd
is a function of width Dv. Further, we assume that,
for values of v such that jv 2 v0j & Dv, ksvd may be
approximated by the first three terms of its Taylor series,
that is,

ksvd > k0 1 k0
0sv 2 v0d 1

k0
00

2
sv 2 v0d2 . (5)

In relation (5), k0, k0
0, and k0

00 denote, respectively, the
wave number and its first and second derivatives with
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respect to v, all evaluated at v ­ v0. We will neglect
the effect of absorption of the medium; consequently, the
parameters k0, k0

0, and k0
00 will all be real. On substitut-

ing from relation (5) into Eq. (4), we obtain the following
expression for the electric-field component Esz, td:

Esz, td ­ usz, t 2 k0
0zdexpfisk0z 2 v0tdg . (6)

In this expression, usz, td is the pulse profile function
defined by the formula

usz, td ­
Z `

2`

asvdexp

√
i
2

v2k0
00z 2 ivt

!
dv . (7)

From Eq. (6) we see that the phase velocity of the pulse
in the dispersive medium is equal to v0yk0 and that its
group velocity is sk0

0d21, as was to be expected.
From Eq. (7) it follows that the pulse profile function

usz, td obeys the following partial differential equation:

i
≠usz, td

≠z
­

k0
00

2
≠2usz, td

≠t2
. (8)

Apart from the constant factors, Eq. (8) is identical to the
one-dimensional version of the Schrödinger equation or,
alternatively, to the one-dimensional form of the paraxial
wave equation. It is this latter fact that underlies the
analogy between paraxial beam propagation and disper-
sive pulse propagation. Solutions to equations such as
Eq. (8) are readily obtainable by the use of a propagation
kernel.14 The pulse profile uoutstd that will emerge from
the end of a length z of dispersive optical fiber is related
to the profile uinstd of the pulse that was coupled into the
fiber by the linear transform

uoutstd ­
Z `

2`

uinst0 dK0st, t0 ddt0 , (9)

where the propagation kernel K0st, t0 d is given by the
formula

K0st, t0 d ­
exps2ipy4dp

2pk0
00z

exp

"
2ist 2 t0 d2

2k0
00z

#
. (10)

This kernel belongs to a class of more general kernels of
the form15

Kst, t0 d ­
exps2ipy4d

p
2pB

exp

"
2isAt0 2 2 2tt0 1 Dt2d

2B

#
,

(11)

where A, B, and D are elements of the matrix"
A
C

B
D

#
­

"
1
0

k0
00z

1

#
. (12)

The parameter C in Eq. (12) is defined so that
AD 2 CB ­ 1.

Another optical device also commonly employed in ex-
periments with short pulses is the chirp modulator. The
effect of such a device is to introduce a quadratic phase
modulation into the pulse profile. Thus the pulse profile
uoutstd emerging from the chirp modulator is related to the
profile function of the input pulse uinstd by the formula

uoutstd ­ uinstdexps2it2y2k0
00fd , (13)

where k0
00 characterizes the dispersion of the identical

optical fibers on either side of the chirp modulator and f
is a parameter that determines the strength of the chirp.
Equation (13) can be rewritten in the form of the linear
transform

uoutstd ­
Z `

2`

uinst0 dKst, t0 ddt0 , (14)

where the kernel Kst, t0 d is given by the formula

Kst, t0 d ­ dst 2 t0 dexps2it2y2k0
00f d

­ lim
s!01

expsipy4d
p

2ps
exp

"
i

2s
st 2 t0 d2 2

it2

2k0
00f

#
(15)

(where dstd is the Dirac delta function). Evidently this
kernel is of the form given by Eq. (11), with the param-
eters A, B, and D now given by the elements of the matrix"

A
C

B
D

#
­ lim

s!01

"
1

21yk0
00f

s

1 2 syk0
00f

#

­

"
1

21yk0
00f

0
1

#
. (16)

Matrices (12) and (16) correspond to the ABCD matri-
ces for optical beam propagation through a distance z
in free space and to the ABCD matrices for passage of
a beam through a thin lens, respectively. For this rea-
son, chirp modulators are sometimes referred to as time
lenses, where the parameter f is the focal length of the
lens (see, for example, Ref. 11).

It can be shown that the change in the profile of an
optical pulse as it propagates through any lossless optical
system that consists of a combination of chirp modulators
and lengths of dispersive optical fiber is given by Eq. (14)
when the kernel Kst, t0 d is of the general form given
by Eq. (11). For an arbitrary system, the values of A,
B, C, and D can be calculated by multiplying together,
in appropriate order, the matrices corresponding to the
various optical components of the system. The use of
ABCD matrices to characterize optical-pulse-propagation
systems is discussed in more detail in Ref. 12.

3. RADON TRANSFORMS AND
CHRONCYCLIC TOMOGRAPHY
The Wigner function associated with the pulse profile
uinstd is defined by the formula

Winst, vd ­
1

2p

Z `

2`

uin
p

√
t 1

t

2

!
uin

√
t 2

t

2

!
expsivtddt .

(17)

This representation of optical pulses has many useful ap-
plications. Most measurable quantities connected with
the optical field can be derived directly from this function.
For this reason, this function has been called the master-
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form signal.3 In particular, the intensity profile can be
deduced from the Wigner function by the formula

Iinstd ­
Z `

0
Winst, vddv . (18)

One can deduce from Eqs. (11), (14), and (17), after
some straightforward calculation, that the Wigner func-
tion of the output of an optical system that is character-
ized by an ABCD matrix is related to the Wigner function
of the input by the expression16,17

Woutst, vd ­ WinsDt 2 Bv, Av 2 Ctd . (19)

It follows from Eqs. (18) and (19) that the intensity profile
of the output pulse is given by the formula

Ioutstd ­
Z `

0
WinsDt 2 Bv, Av 2 Ctddv . (20)

Recently, a special type of optical system, called a frac-
tional Fourier transform system, has received consider-
able attention.5–9 Such a system has a kernel of the form

Ku
FracFT st, t0 d ­

exps2ipy4d
p

2pt2 sin u

3 exp

(
i
2

fscos udt2 1 scos udt0 2 2 2tt0 g
t2 sin u

)
,

(21)

where u and t are real constants. Comparing Eqs. (11)
and (21), we see that the ABCD matrix for a fractional
Fourier transform system is given by the formula"

A
C

B
D

#
­

"
cos u

2sin uyt2

t2 sin u

cos u

#
. (22)

We can see the importance of fractional Fourier transform
systems at once by applying Eq. (22) to Eq. (20). It then
follows that the intensity profile of the output pulse from
a fractional Fourier transform system has the form

Iout
FracFT std ;Lustd ­

Z `

0
Winft cos u 2 svt2dsin u,

v cos u 1 styt2dsin ugdv . (23)

This integral is equivalent to a Radon transform.18

Methods for inverting the Radon transform Lustd are
well known from tomographic imaging (see, for exam-
ple, Refs. 19 and 20). Thus, by measuring the intensity
profile of the output pulse from fractional Fourier trans-
form systems [for which the parameter u takes values in
the range (0 to p)], one can, by inversion of the Radon
transform, obtain the Wigner distribution function of the
input pulse. This method, called chronocyclic tomogra-
phy, was recently proposed for use in connection with
short pulses.4 Practical difficulties nevertheless exist in
realizing the fractional Fourier transform for pulse prop-
agation systems. In particular, it is difficult to obtain
chirp modulators with the required range of values for
the focal length. It is, therefore, of considerable inter-
est to investigate whether it is possible to determine the
Wigner distribution of an optical pulse from measure-
ments obtained by the use of more general and more eas-
ily realizable optical systems than the fractional Fourier
transform systems.
4. GENERALIZED RADON TRANSFORM
Let us consider a general optical system characterized by
the parameters A, B, C, and D. We will assume that
these four parameters are functions of some variable f, for
example, a focal length of some time lens that forms a part
of the system. From Eq. (20) we see that the intensity
profile of the output pulse of such a system is then given
by the formula

Lst, f d ;
Z `

0
WinfDs f dt 2 Bs f dv, As f dv 2 Cs f dtgdv .

(24)

Because of the analogy with Eq. (23), we refer to the
function Lst, f d as a generalized Radon transform of the
Wigner distribution function of the input pulse.

The inversion of this generalized Radon transform can
be obtained as follows. Consider the one-dimensional
Fourier transform of Lst, f d with respect to the variable
t. This function is related to the Wigner function of the
input pulse by the formula

1
s2pd2

Z `

2`

Lst, f dexps2ijtddt ­ W̃infAs f dj, Bs f djg ,

(25)
where W̃insK1, K2d is the two-dimensional Fourier trans-
form of the Wigner function

W̃insK1, K2d ;
1

s2pd2

ZZ `

2`

W̃inst, vd

3 expfisK1t 1 K2vdgdtdv . (26)

Equation (25) demonstrates that, providing that As f d
and Bs f d obey certain constraints, the generalized
Radon transform contains complete information about
the Wigner function. In particular, if the optical system
is such that the ratio Bs f dyAs f d can take any possible
value in the range s2`, `d, then it is possible to invert
the Fourier transform in Eq. (26). Formally this inver-
sion is given by the formula

Winst, vd ­
ZZ `

2`

W̃infAs f dj, Bs f djg

3 exphijfAs f dt 1 Bs f dvgj dfAs f djgdfBs f djg . (27)

On substituting from Eq. (25) and introducing the param-
eters j and f as the variables of integration, Eq. (27) can
be rewritten in the form

Winst, vd ­
1

s2pd2

Z `

2`

dt0
Z `

2`

dj
Z f2

f1

df

3

É
As f d

dBs f d
df

2 Bs f d
dAs f d

df

É
3 jjjLst0, f dexphijfAs f dt 1 Bs f dv 2 t0 gj ,

(28)

where the limits of integration f1 and f2 are chosen so
that the ratio Bs f dyAs f d takes on all values in the range
s2`, `d as f varies from f1 to f2.

As mentioned before, this requirement on As f d and
Bs f d places a restriction on the optical systems that can
be employed to realize a generalized Radon transform.
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Fig. 1. Optical system used in the example of the generalized Radon transform discussed in the text. (a) The optical system for
transmission of short pulses is shown symbolically with the thick lines representing lengths of a dispersive optical fiber and the chirp
modulators (or time lenses) shown as blocks marked C.M. (b) The equivalent paraxial optical system for beam propagation is shown
with a pair of lenses of focal length f that are separated from each other and from the input and the output planes by the distance
z, as shown. The lengthening of the time width of the optical pulse as it propagates through the system in (a) is mathematically
analogous to the broadening of an optical beam as it is diffracted through the system in (b).
Fig. 2. Variation of the ratio Bs f dyAs f d, with the focal length f
for the optical system shown in Fig. 1.

Consider, for example, the optical system as shown in
Fig. 1. For this system, the ABCD matrix is"

As f d
Cs f d

Bs f d
Ds f d

#

­

24 szyf d2 2 3zyf 1 1
szyf 2 2dyk0

00f
k0

00zfszyf d2 2 4zyf 1 3g
szyf d2 2 3zyf 1 1

35 . (29)

The variation of the ratio Bs f dyAs f d with the focal length
f is plotted in Fig. 2. It is straightforward to see that,
as required, the ratio Bs f dyAs f d takes all possible values
in the range s2`, `d as f varies from s3 2

p
5dzy2 to

s3 1
p

5dzy2. The inversion formula is therefore given
by the expression

Winst, vd ­
k0

00

s2pd2

Z `

2`

dt0
Z `

2`

dj
Z 2.618z

0.382z
df

√
z
f

!2

3

24√
z
f

!2

2 4

√
z
f

!
1 5

35
3 jjjLst0, f dexp hijfAs f dt 1 Bs f dv 2 t0 gj ,

(30)
where As f d ­ szyf d2 2 3zyf 1 1 and Bs f d ­ k0
00zfszyf d2 2

4zyf 1 3g. This example illustrates that it is theoreti-
cally possible to obtain the Wigner distribution tomo-
graphically from a simple, easily manipulated optical
system.

The chirp modulation of optical pulses is commonly
performed by an electro-optic device. For such devices,
the focal length f is given by the formula

f ­ sk0
00F0v 2d21 , (31)

where F0 is the amplitude of the phase modulation and
v is the electrical modulation frequency. If we employ
lengths of dispersive fiber for which k0

00z ­ 10221s2 and we
assume that v ­ 10 GHz, then the above arguments show
that a complete reconstruction of the Wigner distribution
of the pulse can be obtained (by the use of the system
shown in Fig. 1), if it is possible to vary F0 between the
values 3.82 and 26.18 rad. Numerical implementation of
the inverse of Eq. (30) should not pose a serious challenge,
as one can adapt existing algorithms developed to invert
radon transforms.

Recently, several methods were proposed for recon-
structing two-dimensional field correlation functions in
some plane from measurements of the intensity of the
field radiated by secondary sources.21–23 Because of the
analogy between paraxial propagation and dispersive
pulse propagation, the method that we propose in this
paper can be extended to two-dimensional paraxial op-
tical systems.
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