19 research outputs found
Monodispersed and size-controlled multibranched gold nanoparticles with nanoscale tuning of surface morphology
A novel seed-mediated synthetic route to produce multibranched gold nanoparticles is reported, in which it is possible to precisely tune both their size and nanostructuration, while maintaining an accurate level of monodispersion. The nanoscale control of surface nanoroughness/branching, ranging from small bud-like features to elongated spikes, allows to obtain fine tuning of the nanoparticle optical properties, up to the red and near-IR region of the spectrum. Such anisotropic nanostructures were demonstrated to be excellent candidates for SERS applications, showing significantly higher signals with respect to the standard spherical nanoparticles
Critical assessment of the evidence for striped nanoparticles
There is now a significant body of literature which reports that stripes form in the ligand shell of suitably functionalised Au nanoparticles. This stripe morphology has been proposed to strongly affect the physicochemical and biochemical properties of the particles. We critique the published evidence for striped nanoparticles in detail, with a particular focus on the interpretation of scanning tunnelling microscopy (STM) data (as this is the only technique which ostensibly provides direct evidence for the presence of stripes). Through a combination of an exhaustive re-analysis of the original data, in addition to new experimental measurements of a simple control sample comprising entirely unfunctionalised particles, we show that all of the STM evidence for striped nanoparticles published to date can instead be explained by a combination of well-known instrumental artefacts, or by issues with data acquisition/analysis protocols. We also critically re-examine the evidence for the presence of ligand stripes which has been claimed to have been found from transmission electron microscopy, nuclear magnetic resonance spectroscopy, small angle neutron scattering experiments, and computer simulations. Although these data can indeed be interpreted in terms of stripe formation, we show that the reported results can alternatively be explained as arising from a combination of instrumental artefacts and inadequate data analysis techniques
Generic Delivery of Payload of Nanoparticles Intracellularly via Hybrid Polymer Capsules for Bioimaging Applications
Towards the goal of development of a generic nanomaterial delivery system and delivery of the âas preparedâ nanoparticles without âfurther surface modificationâ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification
The Synergetic Impact of Anionic, Cationic, and Neutral Polymers on VES Rheology at High-Temperature Environment
Hydraulic fracturing operations target enhancing the productivity of tight formations through viscous fluid injection to break down the formation and transport proppant. Crosslinked polymers are usually used for desired viscoelasticity of the fracturing fluid; however, viscoelastic surfactants (VES) became a possible replacement due to their less damaging impact. To design a fracturing fluid with exceptional rheological and thermal stability, we investigated mixing zwitterionic VES with carboxymethyl cellulose (CMC), hydroxyethylcellulose (HEC), or a poly diallyl dimethylammonium chloride (DADMAC) polymers. As a base fluid, calcium chloride (CaCl2) solution was prepared with either distilled water or seawater before adding a polymer and the VES. A Chandler high-pressure, high-temperature (HPHT) viscometer was used to conduct the viscosity measurements at a shear rate of 100 1/s. It has been found that adding 1% CMC polymer to 9% (v/v) VES increases the viscosity more compared to 10% (v/v) VES at reservoir temperatures of 143.3 °C. On the other hand, adding only 1.0% of HEC to 9% (v/v) VES doubled the viscosity and proved more effective than adding CMC. HEC, nevertheless, reduced the system stability at high temperatures (i.e., 148.9 °C). Adding DADMAC polymer (DP) to VES increased the system viscosity and maintained high stability at high temperatures despite being exposed to saltwater. CaCl2 concentration was also shown to affect rheology at different temperatures. The improved viscosity through the newly designed polymer can reduce chemical costs (i.e., reducing VES load), making it more efficient in hydraulic fracturing operations
Synthesis of highly stable silver nanoparticles by photoreduction and their size fractionation by phase transfer method
In this report we demonstrate a green chemical approach for the synthesis of stable silver nanoparticles in aqueous medium using tyrosine as an efficient photoreducing agent. A narrow size distribution of silver nanoparticles can be achieved by this simple photoirradiation method without using any additional stabilizing agents or surfactants. Two different irradiation sources have been explored resulting in a different particle size distribution pattern in each case. Further, we show that starting from a polydisperse tyrosine synthesized silver nanoparticles sample, it is also possible to fractionate them into different size ranges. The size fractionation was achieved by a 2 stage phase transfer method employing different organic solvents. The nanoparticles synthesized were characterized using UVâvis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques
Surface Composition of Silver Nanocubes and Their Influence on Morphological Stabilization and Catalytic Performance in Ethylene Epoxidation
Silver nanocubes with exposed (100) facets are reported to have
improved selectivity with respect to their spherical counterparts
for ethylene epoxidation. In the present study, we observe that the
surface composition of the silver nanocubes also has a critical impact
on activity. Detailed investigation of the surface composition of
silver nanocubes has been carried out using HRTEM, SEM, EDS, EELS,
and EFTEM. Surfaces of silver nanocubes are âpassivatedâ
by chloride, and its removal is essential to achieve any catalytic
activity. However, the surface chloride is apparently essential for
stabilizing the cubic morphology of the particles. Attempts were made
to understand the competing effects of the surface species for retaining
the morphology of the nanocubes and on their catalytic activity in
ethylene epoxidation