35 research outputs found

    Pattern Recognition Receptors and the Host Cell Death Molecular Machinery

    Get PDF
    Pattern Recognition Receptors (PRRs) are proteins capable of recognizing molecules frequently found in pathogens (the so-called Pathogen-Associated Molecular Patterns—PAMPs), or molecules released by damaged cells (the Damage-Associated Molecular Patterns—DAMPs). They emerged phylogenetically prior to the appearance of the adaptive immunity and, therefore, are considered part of the innate immune system. Signals derived from the engagement of PRRs on the immune cells activate microbicidal and pro-inflammatory responses required to eliminate or, at least, to contain infectious agents. Molecularly controlled forms of cell death are also part of a very ancestral mechanism involved in key aspects of the physiology of multicellular organism, including the elimination of unwanted, damaged or infected cells. Interestingly, each form of cell death has its particular effect on inflammation and on the development of innate and adaptive immune responses. In this review article, we discuss some aspects of the molecular interplay between the cell death machinery and signals initiated by the activation of PRRs by PAMPs and DAMPs

    Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death

    Get PDF
    Radiotherapy is commonly used as a cytotoxic treatment of a wide variety of tumors. Interestingly, few case reports underlined its potential to induce immune-mediated abscopal effects, resulting in regression of metastases, distant from the irradiated site. These observations are rare, and apparently depend on the dose used, suggesting that dose-related cellular responses may be involved in the distant immunogenic responses. Ionizing radiation (IR) has been reported to elicit immunogenic apoptosis, necroptosis, mitotic catastrophe, and senescence. In order to link a cellular outcome with a particular dose of irradiation, we performed a systematic study in a panel of cell lines on the cellular responses at different doses of X-rays. Remarkably, we observed that all cell lines tested responded in a similar fashion to IR with characteristics of mitotic catastrophe, senescence, lipid peroxidation, and caspase activity. Iron chelators (but not Ferrostatin-1 or vitamin E) could prevent the formation of lipid peroxides and cell death induced by IR, suggesting a crucial role of iron-dependent cell death during high-dose irradiation. We also show that in K-Ras-mutated cells, IR can induce morphological features reminiscent of methuosis, a cell death modality that has been recently described following H-Ras or K-Ras mutation overexpression

    Loss-of-function alleles of P2RX7 and TLR4 fail to affect the response to chemotherapy in non-small cell lung cancer

    Get PDF
    The success of anticancer chemotherapy relies at least in part on the induction of an immune response against tumor cells. Thus, tumors growing on mice that lack the pattern recognition receptor TLR4 or the purinergic receptor P2RX7 fail to respond to chemotherapy with anthracyclins or oxaliplatin in conditions in which the same neoplasms growing on immunocompetent mice would do so. Similarly, the therapeutic efficacy (measured as progression-free survival) of adjuvant chemotherapy with anthracyclins is reduced in breast cancer patients bearing loss-of-function alleles of TLR4 or P2RX7. TLR4 loss-of-function alleles also have a negative impact on the therapeutic outcome of oxaliplatin in colorectal cancer patients. Here, we report that loss-of-function TLR4 and P2RX7 alleles do not affect overall survival in non-small cell lung cancer (NSCLC) patients, irrespective of the administration and type of chemotherapy. The intrinsic characteristics of NSCLC (which near-to-always is chemoresistant and associated with poor prognosis) and/or the type of therapy that is employed to treat this malignancy (which near-to-always is based on cisplatin) may explain why two genes that affect the immune response to dying cells fail to influence the clinical progression of NSCLC patients

    Prognostic impact of vitamin B6 metabolism in lung cancer

    Get PDF
    Patients with non-small cell lung cancer (NSCLC) are routinely treated with cytotoxic agents such as cisplatin. Through a genome-wide siRNA-based screen, we identified vitamin B6 metabolism as a central regulator of cisplatin responses in vitro and in vivo. By aggravating a bioenergetic catastrophe that involves the depletion of intracellular glutathione, vitamin B6 exacerbates cisplatin-mediated DNA damage, thus sensitizing a large panel of cancer cell lines to apoptosis. Moreover, vitamin B6 sensitizes cancer cells to apoptosis induction by distinct types of physical and chemical stress, including multiple chemotherapeutics. This effect requires pyridoxal kinase (PDXK), the enzyme that generates the bioactive form of vitamin B6. In line with a general role of vitamin B6 in stress responses, low PDXK expression levels were found to be associated with poor disease outcome in two independent cohorts of patients with NSCLC. These results indicate that PDXK expression levels constitute a biomarker for risk stratification among patients with NSCLC.publishedVersio

    Consensus guidelines for the detection of immunogenic cell death

    Get PDF
    none82siApoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.Kepp, Oliver; Senovilla, Laura; Vitale, Ilio; Vacchelli, Erika; Adjemian, Sandy; Agostinis, Patrizia; Apetoh, Lionel; Aranda, Fernando; Barnaba, Vincenzo; Bloy, Norma; Bracci, Laura; Breckpot, Karine; Brough, David; BuquĂ©, Aitziber; Castro, Maria G; Cirone, Mara; Colombo, Maria I; Cremer, Isabelle; Demaria, Sandra; Dini, Luciana; Eliopoulos, Aristides G; Faggioni, Alberto; Formenti, Silvia C; FučíkovĂĄ, Jitka; Gabriele, Lucia; Gaipl, Udo S; Galon, JĂ©rĂŽme; Garg, Abhishek; Ghiringhelli, François; Giese, Nathalia A; Guo, Zong Sheng; Hemminki, Akseli; Herrmann, Martin; Hodge, James W; Holdenrieder, Stefan; Honeychurch, Jamie; Hu, Hong-Min; Huang, Xing; Illidge, Tim M; Kono, Koji; Korbelik, Mladen; Krysko, Dmitri V; Loi, Sherene; Lowenstein, Pedro R; Lugli, Enrico; Ma, Yuting; Madeo, Frank; Manfredi, Angelo A; Martins, Isabelle; Mavilio, Domenico; Menger, Laurie; Merendino, NicolĂČ; Michaud, Michael; Mignot, Gregoire; Mossman, Karen L; Multhoff, Gabriele; Oehler, Rudolf; Palombo, Fabio; Panaretakis, Theocharis; Pol, Jonathan; Proietti, Enrico; Ricci, Jean-Ehrland; Riganti, Chiara; Rovere-Querini, Patrizia; Rubartelli, Anna; Sistigu, Antonella; Smyth, Mark J; Sonnemann, Juergen; Spisek, Radek; Stagg, John; Sukkurwala, Abdul Qader; Tartour, Eric; Thorburn, Andrew; Thorne, Stephen H; Vandenabeele, Peter; Velotti, Francesca; Workenhe, Samuel T; Yang, Haining; Zong, Wei-Xing; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, LorenzoKepp, Oliver; Senovilla, Laura; Vitale, Ilio; Vacchelli, Erika; Adjemian, Sandy; Agostinis, Patrizia; Apetoh, Lionel; Aranda, Fernando; Barnaba, Vincenzo; Bloy, Norma; Bracci, Laura; Breckpot, Karine; Brough, David; BuquĂ©, Aitziber; Castro, Maria G; Cirone, Mara; Colombo, Maria I; Cremer, Isabelle; Demaria, Sandra; Dini, Luciana; Eliopoulos, Aristides G; Faggioni, Alberto; Formenti, Silvia C; FučíkovĂĄ, Jitka; Gabriele, Lucia; Gaipl, Udo S; Galon, JĂ©rĂŽme; Garg, Abhishek; Ghiringhelli, François; Giese, Nathalia A; Guo, Zong Sheng; Hemminki, Akseli; Herrmann, Martin; Hodge, James W; Holdenrieder, Stefan; Honeychurch, Jamie; Hu, Hong Min; Huang, Xing; Illidge, Tim M; Kono, Koji; Korbelik, Mladen; Krysko, Dmitri V; Loi, Sherene; Lowenstein, Pedro R; Lugli, Enrico; Ma, Yuting; Madeo, Frank; Manfredi, Angelo A; Martins, Isabelle; Mavilio, Domenico; Menger, Laurie; Merendino, NicolĂČ; Michaud, Michael; Mignot, Gregoire; Mossman, Karen L; Multhoff, Gabriele; Oehler, Rudolf; Palombo, Fabio; Panaretakis, Theocharis; Pol, Jonathan; Proietti, Enrico; Ricci, Jean Ehrland; Riganti, Chiara; Rovere Querini, Patrizia; Rubartelli, Anna; Sistigu, Antonella; Smyth, Mark J; Sonnemann, Juergen; Spisek, Radek; Stagg, John; Sukkurwala, Abdul Qader; Tartour, Eric; Thorburn, Andrew; Thorne, Stephen H; Vandenabeele, Peter; Velotti, Francesca; Workenhe, Samuel T; Yang, Haining; Zong, Wei Xing; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenz

    Facteurs essentiels pour le succÚs des chimiothérapies immunogÚnes

    No full text
    Most of the cytotoxic agents used in cancer therapy are known to be immunosuppressive, because of their unspecific targeting of rapidly dividing cells, like tumor cells, but also cells of the immune system. However, radiotherapy, as well as some chemotherapeutic agents such as anthracyclines or oxaliplatine were reported to have immunostimulatory effects, thanks to their capacity to induce immunogenic tumor cell death. This type of cell death is characterized by the release of danger signals from the dying tumor cell, which will activate the immune system. As a first event, exposure of calreticulin from the dying tumor cell will act as an « eat-me » signal for dendritic cells. Once released, the nuclear protein HMGB1 will bind to TLR4, facilitating antigen processing and presentation. The dying tumor cells will also release ATP, which acts on P2X7 receptors and activates NLRP3 inflammasomme, leading to IL-1 release, necessary for IFN-- producing CD8+ T cells activation. Autophagy is a degradation process limiting genomic instability and cancer initiation. It can be induced after a stress of the endoplasmic reticulum (ER). ER-stress is also involved in calreticulin exposure during immunogenic cell death, so we aimed at understanding the role of autophagy in immunogenic cell death. We found that autophagy is required for the release of ATP after treatment with immunogenic chemotherapies. Moreover, we showed that ATP released from the dying cells is necessary for the recruitment of immune cells with inflammatory monocyte phenotype (CD11b+Ly6ChighLy6G-), as well as their precursors. ATP was also important for the differentiation of these inflammatory monocytes into dendritic cells. These CD11b+Ly6ChighLy6G- cells were efficient in presenting the tumor antigens to CD8+ T cells, and to induce a tumor-specific immune response. However, autophagy-deficient cells were not able to recuit dendritic cells or to induce CD8+ T cells activation. These studies showed the importance of autophagy in tumor-specific immune response, after treatment with immunogenic chemotherapies. We also reported that ATP is involved in the recruitment and differentiation of cells with inflammatory monocytes phenotype. Altogether, these results give new insights in the concept of immunogenic cell death.La plupart des chimiothĂ©rapies sont connues pour exercer une immunosuppression en plus de leur effet cytotoxique, car elles ciblent sans distinction les cellules Ă  prolifĂ©ration rapide telles que les cellules tumorales ainsi que les cellules du systĂšme immunitaire. Cependant, la radiothĂ©rapie ainsi que certaines chimiothĂ©rapies comme les anthracyclines ou l’oxaliplatine ont montrĂ© une propriĂ©tĂ© immunostimulante, grĂące Ă  l’induction d’une mort cellulaire dite immunogĂšne. Cette mort cellulaire se caractĂ©rise par la libĂ©ration de signaux de danger par la cellule mourante qui vont activer le systĂšme immunitaire. Tout d’abord, l’exposition de la calrĂ©ticuline Ă  la surface de la cellule va ĂȘtre un signal de phagocytose pour les cellules dendritiques. Les cellules succombant Ă  la mort cellulaire libĂšrent aussi HMGB1 qui en se liant Ă  TLR4 permet un apprĂȘtement et une prĂ©sentation des antigĂšnes tumoraux efficace. Ensuite, la libĂ©ration d’ATP qui agit sur les rĂ©cepteurs P2RX7 permet l’activation de l’inflammasomme NLRP3 et conduit Ă  la sĂ©crĂ©tion d’IL-1ÎČ indispensable pour l’activation des lymphocytes T CD8+ sĂ©crĂ©tant de l’IFN-Îł. L’autophagie est un processus de dĂ©gradation permettant de limiter l’instabilitĂ© gĂ©nomique et l’initiation de cancers. L’autophagie, peut ĂȘtre induite aprĂšs un stress du rĂ©ticulum endoplasmique, qui est nĂ©cessaire Ă  l’exposition de la calrĂ©ticuline lors de la mort cellulaire immunogĂšne. Nous avons donc cherchĂ© Ă  Ă©valuer l’importance de l’autophagie aprĂšs traitement aux chimiothĂ©rapies immunogĂšnes. Nous avons montrĂ© que l’autophagie est requise pour induire la libĂ©ration d’ATP lors de la mort cellulaire immunogĂšne. De plus, nous avons montrĂ© que l’ATP libĂ©rĂ© par les cellules mourantes aprĂšs traitement aux chimiothĂ©rapies immunogĂšnes permet le recrutement de cellules de type monocyte inflammatoire (CD11b+Ly6ChighLy6G-) ainsi que de leurs prĂ©curseurs. En outre, l’ATP est un facteur important dans la diffĂ©renciation de ces cellules en cellules dendritiques inflammatoires. Les cellules CD11b+Ly6ChighLy6G- ont montrĂ© une grande capacitĂ© Ă  prĂ©senter les antigĂšnes tumoraux aux lymphocytes T CD8+ permettant leur activation. Les cellules dĂ©ficientes pour l’autophagie n’ont quant Ă  elles pas permit le recrutement de cellules dendritiques dans les tumeurs ni l’activation de lymphocytes T CD8+. Ces travaux ont permit de montrer l’importance de l’autophagie pour mettre en place une rĂ©ponse immunitaire anti-tumorale spĂ©cifique lors du traitement avec des chimiothĂ©rapies immunogĂšnes. De plus, nous avons montrĂ© que l’ATP est impliquĂ© dans le recrutement et la diffĂ©renciation de cellules avec un phĂ©notype de monocytes inflammatoires. L’ensemble de ces rĂ©sultats apporte de nouveaux Ă©lĂ©ments dans la caractĂ©risation du processus de mort cellulaire immunogĂšne

    Essential factors for the success of immunogenic chemotherapies

    No full text
    La plupart des chimiothĂ©rapies sont connues pour exercer une immunosuppression en plus de leur effet cytotoxique, car elles ciblent sans distinction les cellules Ă  prolifĂ©ration rapide telles que les cellules tumorales ainsi que les cellules du systĂšme immunitaire. Cependant, la radiothĂ©rapie ainsi que certaines chimiothĂ©rapies comme les anthracyclines ou l’oxaliplatine ont montrĂ© une propriĂ©tĂ© immunostimulante, grĂące Ă  l’induction d’une mort cellulaire dite immunogĂšne. Cette mort cellulaire se caractĂ©rise par la libĂ©ration de signaux de danger par la cellule mourante qui vont activer le systĂšme immunitaire. Tout d’abord, l’exposition de la calrĂ©ticuline Ă  la surface de la cellule va ĂȘtre un signal de phagocytose pour les cellules dendritiques. Les cellules succombant Ă  la mort cellulaire libĂšrent aussi HMGB1 qui en se liant Ă  TLR4 permet un apprĂȘtement et une prĂ©sentation des antigĂšnes tumoraux efficace. Ensuite, la libĂ©ration d’ATP qui agit sur les rĂ©cepteurs P2RX7 permet l’activation de l’inflammasomme NLRP3 et conduit Ă  la sĂ©crĂ©tion d’IL-1ÎČ indispensable pour l’activation des lymphocytes T CD8+ sĂ©crĂ©tant de l’IFN-Îł. L’autophagie est un processus de dĂ©gradation permettant de limiter l’instabilitĂ© gĂ©nomique et l’initiation de cancers. L’autophagie, peut ĂȘtre induite aprĂšs un stress du rĂ©ticulum endoplasmique, qui est nĂ©cessaire Ă  l’exposition de la calrĂ©ticuline lors de la mort cellulaire immunogĂšne. Nous avons donc cherchĂ© Ă  Ă©valuer l’importance de l’autophagie aprĂšs traitement aux chimiothĂ©rapies immunogĂšnes. Nous avons montrĂ© que l’autophagie est requise pour induire la libĂ©ration d’ATP lors de la mort cellulaire immunogĂšne. De plus, nous avons montrĂ© que l’ATP libĂ©rĂ© par les cellules mourantes aprĂšs traitement aux chimiothĂ©rapies immunogĂšnes permet le recrutement de cellules de type monocyte inflammatoire (CD11b+Ly6ChighLy6G-) ainsi que de leurs prĂ©curseurs. En outre, l’ATP est un facteur important dans la diffĂ©renciation de ces cellules en cellules dendritiques inflammatoires. Les cellules CD11b+Ly6ChighLy6G- ont montrĂ© une grande capacitĂ© Ă  prĂ©senter les antigĂšnes tumoraux aux lymphocytes T CD8+ permettant leur activation. Les cellules dĂ©ficientes pour l’autophagie n’ont quant Ă  elles pas permit le recrutement de cellules dendritiques dans les tumeurs ni l’activation de lymphocytes T CD8+. Ces travaux ont permit de montrer l’importance de l’autophagie pour mettre en place une rĂ©ponse immunitaire anti-tumorale spĂ©cifique lors du traitement avec des chimiothĂ©rapies immunogĂšnes. De plus, nous avons montrĂ© que l’ATP est impliquĂ© dans le recrutement et la diffĂ©renciation de cellules avec un phĂ©notype de monocytes inflammatoires. L’ensemble de ces rĂ©sultats apporte de nouveaux Ă©lĂ©ments dans la caractĂ©risation du processus de mort cellulaire immunogĂšne.Most of the cytotoxic agents used in cancer therapy are known to be immunosuppressive, because of their unspecific targeting of rapidly dividing cells, like tumor cells, but also cells of the immune system. However, radiotherapy, as well as some chemotherapeutic agents such as anthracyclines or oxaliplatine were reported to have immunostimulatory effects, thanks to their capacity to induce immunogenic tumor cell death. This type of cell death is characterized by the release of danger signals from the dying tumor cell, which will activate the immune system. As a first event, exposure of calreticulin from the dying tumor cell will act as an « eat-me » signal for dendritic cells. Once released, the nuclear protein HMGB1 will bind to TLR4, facilitating antigen processing and presentation. The dying tumor cells will also release ATP, which acts on P2X7 receptors and activates NLRP3 inflammasomme, leading to IL-1 release, necessary for IFN-- producing CD8+ T cells activation. Autophagy is a degradation process limiting genomic instability and cancer initiation. It can be induced after a stress of the endoplasmic reticulum (ER). ER-stress is also involved in calreticulin exposure during immunogenic cell death, so we aimed at understanding the role of autophagy in immunogenic cell death. We found that autophagy is required for the release of ATP after treatment with immunogenic chemotherapies. Moreover, we showed that ATP released from the dying cells is necessary for the recruitment of immune cells with inflammatory monocyte phenotype (CD11b+Ly6ChighLy6G-), as well as their precursors. ATP was also important for the differentiation of these inflammatory monocytes into dendritic cells. These CD11b+Ly6ChighLy6G- cells were efficient in presenting the tumor antigens to CD8+ T cells, and to induce a tumor-specific immune response. However, autophagy-deficient cells were not able to recuit dendritic cells or to induce CD8+ T cells activation. These studies showed the importance of autophagy in tumor-specific immune response, after treatment with immunogenic chemotherapies. We also reported that ATP is involved in the recruitment and differentiation of cells with inflammatory monocytes phenotype. Altogether, these results give new insights in the concept of immunogenic cell death

    Facteurs essentiels pour le succÚs des chimiothérapies immunogÚnes.

    No full text
    La plupart des chimiothĂ©rapies sont connues pour exercer une immunosuppression en plus de leur effet cytotoxique, car elles ciblent sans distinction les cellules Ă  prolifĂ©ration rapide telles que les cellules tumorales ainsi que les cellules du systĂšme immunitaire. Cependant, la radiothĂ©rapie ainsi que certaines chimiothĂ©rapies comme les anthracyclines ou l oxaliplatine ont montrĂ© une propriĂ©tĂ© immunostimulante, grĂące Ă  l induction d une mort cellulaire dite immunogĂšne. Cette mort cellulaire se caractĂ©rise par la libĂ©ration de signaux de danger par la cellule mourante qui vont activer le systĂšme immunitaire. Tout d abord, l exposition de la calrĂ©ticuline Ă  la surface de la cellule va ĂȘtre un signal de phagocytose pour les cellules dendritiques. Les cellules succombant Ă  la mort cellulaire libĂšrent aussi HMGB1 qui en se liant Ă  TLR4 permet un apprĂȘtement et une prĂ©sentation des antigĂšnes tumoraux efficace. Ensuite, la libĂ©ration d ATP qui agit sur les rĂ©cepteurs P2RX7 permet l activation de l inflammasomme NLRP3 et conduit Ă  la sĂ©crĂ©tion d IL-1b indispensable pour l activation des lymphocytes T CD8+ sĂ©crĂ©tant de l IFN-g. L autophagie est un processus de dĂ©gradation permettant de limiter l instabilitĂ© gĂ©nomique et l initiation de cancers. L autophagie, peut ĂȘtre induite aprĂšs un stress du rĂ©ticulum endoplasmique, qui est nĂ©cessaire Ă  l exposition de la calrĂ©ticuline lors de la mort cellulaire immunogĂšne. Nous avons donc cherchĂ© Ă  Ă©valuer l importance de l autophagie aprĂšs traitement aux chimiothĂ©rapies immunogĂšnes. Nous avons montrĂ© que l autophagie est requise pour induire la libĂ©ration d ATP lors de la mort cellulaire immunogĂšne. De plus, nous avons montrĂ© que l ATP libĂ©rĂ© par les cellules mourantes aprĂšs traitement aux chimiothĂ©rapies immunogĂšnes permet le recrutement de cellules de type monocyte inflammatoire (CD11b+Ly6ChighLy6G-) ainsi que de leurs prĂ©curseurs. En outre, l ATP est un facteur important dans la diffĂ©renciation de ces cellules en cellules dendritiques inflammatoires. Les cellules CD11b+Ly6ChighLy6G- ont montrĂ© une grande capacitĂ© Ă  prĂ©senter les antigĂšnes tumoraux aux lymphocytes T CD8+ permettant leur activation. Les cellules dĂ©ficientes pour l autophagie n ont quant Ă  elles pas permit le recrutement de cellules dendritiques dans les tumeurs ni l activation de lymphocytes T CD8+. Ces travaux ont permit de montrer l importance de l autophagie pour mettre en place une rĂ©ponse immunitaire anti-tumorale spĂ©cifique lors du traitement avec des chimiothĂ©rapies immunogĂšnes. De plus, nous avons montrĂ© que l ATP est impliquĂ© dans le recrutement et la diffĂ©renciation de cellules avec un phĂ©notype de monocytes inflammatoires. L ensemble de ces rĂ©sultats apporte de nouveaux Ă©lĂ©ments dans la caractĂ©risation du processus de mort cellulaire immunogĂšne.Most of the cytotoxic agents used in cancer therapy are known to be immunosuppressive, because of their unspecific targeting of rapidly dividing cells, like tumor cells, but also cells of the immune system. However, radiotherapy, as well as some chemotherapeutic agents such as anthracyclines or oxaliplatine were reported to have immunostimulatory effects, thanks to their capacity to induce immunogenic tumor cell death. This type of cell death is characterized by the release of danger signals from the dying tumor cell, which will activate the immune system. As a first event, exposure of calreticulin from the dying tumor cell will act as an eat-me signal for dendritic cells. Once released, the nuclear protein HMGB1 will bind to TLR4, facilitating antigen processing and presentation. The dying tumor cells will also release ATP, which acts on P2X7 receptors and activates NLRP3 inflammasomme, leading to IL-1 release, necessary for IFN- - producing CD8+ T cells activation. Autophagy is a degradation process limiting genomic instability and cancer initiation. It can be induced after a stress of the endoplasmic reticulum (ER). ER-stress is also involved in calreticulin exposure during immunogenic cell death, so we aimed at understanding the role of autophagy in immunogenic cell death. We found that autophagy is required for the release of ATP after treatment with immunogenic chemotherapies. Moreover, we showed that ATP released from the dying cells is necessary for the recruitment of immune cells with inflammatory monocyte phenotype (CD11b+Ly6ChighLy6G-), as well as their precursors. ATP was also important for the differentiation of these inflammatory monocytes into dendritic cells. These CD11b+Ly6ChighLy6G- cells were efficient in presenting the tumor antigens to CD8+ T cells, and to induce a tumor-specific immune response. However, autophagy-deficient cells were not able to recuit dendritic cells or to induce CD8+ T cells activation. These studies showed the importance of autophagy in tumor-specific immune response, after treatment with immunogenic chemotherapies. We also reported that ATP is involved in the recruitment and differentiation of cells with inflammatory monocytes phenotype. Altogether, these results give new insights in the concept of immunogenic cell death.PARIS11-SCD-Bib. Ă©lectronique (914719901) / SudocSudocFranceF

    Near future of tumor immunology: Anticipating resistance mechanisms to immunotherapies, a big challenge for clinical trials

    No full text
    The success of immunotherapies brings hope for the future of cancer treatment. Even so, we are faced with a new challenge, that of understanding which patients will respond initially and, possibly, develop resistance. The examination of the immune profile, especially approaches related to the immunoscore, may foretell which tumors will have a positive initial response. Ideally, the mutation load would also be analyzed, helping to reveal tumor associated antigens that are predictive of an effective cytolytic attack. However, the response may be hindered by changes induced in the tumor and its microenvironment during treatment, perhaps stemming from the therapy itself. To monitor such alterations, we suggest that minimally invasive approaches should be explored, such as the analysis of circulating tumor DNA. When testing new drugs, the data collected from each patient would initially represent an N of 1 clinical trial that could then be deposited in large databases and mined retrospectively for trends and correlations between genetic alterations and response to therapy. We expect that the investment in personalized approaches that couple molecular analysis during clinical trials will yield critical data that, in the future, may be used to predict the outcome of novel immunotherapies
    corecore