1,492 research outputs found

    The Structure of a Low-Metallicity Giant Molecular Cloud Complex

    Full text link
    To understand the impact of low metallicities on giant molecular cloud (GMC) structure, we compare far infrared dust emission, CO emission, and dynamics in the star-forming complex N83 in the Wing of the Small Magellanic Cloud. Dust emission (measured by Spitzer as part of the S3MC and SAGE-SMC surveys) probes the total gas column independent of molecular line emission and traces shielding from photodissociating radiation. We calibrate a method to estimate the dust column using only the high-resolution Spitzer data and verify that dust traces the ISM in the HI-dominated region around N83. This allows us to resolve the relative structures of H2, dust, and CO within a giant molecular cloud complex, one of the first times such a measurement has been made in a low-metallicity galaxy. Our results support the hypothesis that CO is photodissociated while H2 self-shields in the outer parts of low-metallicity GMCs, so that dust/self shielding is the primary factor determining the distribution of CO emission. Four pieces of evidence support this view. First, the CO-to-H2 conversion factor averaged over the whole cloud is very high 4-11 \times 10^21 cm^-2/(K km/s), or 20-55 times the Galactic value. Second, the CO-to-H2 conversion factor varies across the complex, with its lowest (most nearly Galactic) values near the CO peaks. Third, bright CO emission is largely confined to regions of relatively high line-of-sight extinction, A_V >~ 2 mag, in agreement with PDR models and Galactic observations. Fourth, a simple model in which CO emerges from a smaller sphere nested inside a larger cloud can roughly relate the H2 masses measured from CO kinematics and dust.Comment: 17 pages, 10 figures (including appendix), accepted for publication in the Astrophysical Journa

    Admissible large perturbations in structural redesign

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76363/1/AIAA-10551-828.pd

    A Parallactic Distance of 389 +24/-21 parsecs to the Orion Nebula Cluster from Very Long Baseline Array Observations

    Full text link
    We determine the parallax and proper motion of the flaring, non-thermal radio star GMR A, a member of the Orion Nebula Cluster, using Very Long Baseline Array observations. Based on the parallax, we measure a distance of 389 +24/-21 parsecs to the source. Our measurement places the Orion Nebula Cluster considerably closer than the canonical distance of 480 +/- 80 parsecs determined by Genzel et al. (1981). A change of this magnitude in distance lowers the luminosities of the stars in the cluster by a factor of ~ 1.5. We briefly discuss two effects of this change--an increase in the age spread of the pre-main sequence stars and better agreement between the zero-age main-sequence and the temperatures and luminosities of massive stars.Comment: 10 pages, 4 figures, emulateapj, accepted to Ap

    Localization of Narrowband Single Photon Emitters in Nanodiamonds

    Full text link
    © 2016 American Chemical Society. Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors

    Compact medical fluorosensor for minimally invasive tissue characterization

    Get PDF
    A compact fiber-optic point-measuring fluorosensor fully adapted to clinical studies is described. The system can use two excitation wavelengths, 337 and 405 nm, obtained from a nitrogen laser directly, or after dye laser conversion, respectively. The image intensifier used in the spectrometer can be gated with a variable time delay, allowing also time-resolved spectra to be extracted, with a time resolution of about 4 ns. Moreover, diffusely scattered white light can be spectrally recorded. The system is fully computer controlled enabling short recording times in clinical application, which are illustrated

    A Finite Element Study of Electromagnetic Riveting

    Get PDF
    Electromagnetic riveting, used in some aerospace assembly processes, involves rapid deformation, leading to the finished rivet configuration. Analysis of this process is described for the case of an aluminum rivet joining typical aluminum structural elements. The analysis is based on a finite element method that includes the effects of heating, due to rapid plastic deformation of the material, on the material properties. Useful details of material deformation and thermal history and the final rivet and structure configuration and states of stress and strain are obtained. These results have significant implications in the design, implementation, and improvement of practical fastening processes in the aerospace industry

    Dusty OB stars in the Small Magellanic Cloud - II: Extragalactic Disks or Examples of the Pleiades Phenomenon?

    Full text link
    We use mid-infrared Spitzer spectroscopy and far-infrared Herschel photometry for a sample of twenty main sequence O9--B2 stars in the Small Magellanic Cloud (SMC) with strong 24 micron excesses to investigate the origin of the mid-IR emission. Either debris disks around the stars or illuminated patches of dense interstellar medium (ISM) can cause such mid-IR emission. In a companion paper, Paper I, we use optical spectroscopy to show that it is unlikely for any of these sources to be classical Be stars or Herbig Ae/Be stars. We focus our analysis on debris disks and cirrus hot spots. We find three out of twenty stars to be significantly extended in the mid-IR, establishing them as cirrus hot spots. We then fit the IR spectral energy distributions to determine dust temperatures and masses. We find the dust masses in the SMC stars to be larger than for any known debris disks, although this evidence against the debris disk hypothesis is circumstantial. Finally, we created a local comparison sample of bright mid-IR OB stars in the Milky Way (MW) by cross-matching the WISE and Hipparcos catalogs. All such local stars in the appropriate luminosity range that can be unambiguously classified are young stars with optical emission lines or are spatially resolved by WISE with sizes too large to be plausible debris disk candidates. We conclude that the very strong mid-IR flux excesses are most likely explained as cirrus hot spots, although we cannot rigorously rule out that a small fraction of the sample is made up of debris disks or transition disks. We present suggestive evidence that bow-shock heating around runaway stars may be a contributing mechanism to the interstellar emission. These sources, interpreted as cirrus hot spots, offer a new localised probe of diffuse interstellar dust in a low metallicity environment. (Abridged)Comment: Accepted for publication in ApJ, 23 pages, 11 figures, 8 table

    Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit

    Get PDF
    Volumes of sub-wavelength electromagnetic elements can act like homogeneous materials: metamaterials. In analogy, sheets of optical elements such as prisms can act ray-optically like homogeneous sheet materials. In this sense, such sheets can be considered to be metamaterials for light rays (METATOYs). METATOYs realize new and unusual transformations of the directions of transmitted light rays. We study here, in the ray-optics and scalar-wave limits, the wave-optical analog of such transformations, and we show that such an analog does not always exist. Perhaps, this is the reason why many of the ray-optical possibilities offered by METATOYs have never before been considered.Comment: 10 pages, 3 figures, references update
    corecore