1,492 research outputs found
The Structure of a Low-Metallicity Giant Molecular Cloud Complex
To understand the impact of low metallicities on giant molecular cloud (GMC)
structure, we compare far infrared dust emission, CO emission, and dynamics in
the star-forming complex N83 in the Wing of the Small Magellanic Cloud. Dust
emission (measured by Spitzer as part of the S3MC and SAGE-SMC surveys) probes
the total gas column independent of molecular line emission and traces
shielding from photodissociating radiation. We calibrate a method to estimate
the dust column using only the high-resolution Spitzer data and verify that
dust traces the ISM in the HI-dominated region around N83. This allows us to
resolve the relative structures of H2, dust, and CO within a giant molecular
cloud complex, one of the first times such a measurement has been made in a
low-metallicity galaxy. Our results support the hypothesis that CO is
photodissociated while H2 self-shields in the outer parts of low-metallicity
GMCs, so that dust/self shielding is the primary factor determining the
distribution of CO emission. Four pieces of evidence support this view. First,
the CO-to-H2 conversion factor averaged over the whole cloud is very high 4-11
\times 10^21 cm^-2/(K km/s), or 20-55 times the Galactic value. Second, the
CO-to-H2 conversion factor varies across the complex, with its lowest (most
nearly Galactic) values near the CO peaks. Third, bright CO emission is largely
confined to regions of relatively high line-of-sight extinction, A_V >~ 2 mag,
in agreement with PDR models and Galactic observations. Fourth, a simple model
in which CO emerges from a smaller sphere nested inside a larger cloud can
roughly relate the H2 masses measured from CO kinematics and dust.Comment: 17 pages, 10 figures (including appendix), accepted for publication
in the Astrophysical Journa
Admissible large perturbations in structural redesign
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76363/1/AIAA-10551-828.pd
A Parallactic Distance of 389 +24/-21 parsecs to the Orion Nebula Cluster from Very Long Baseline Array Observations
We determine the parallax and proper motion of the flaring, non-thermal radio
star GMR A, a member of the Orion Nebula Cluster, using Very Long Baseline
Array observations. Based on the parallax, we measure a distance of 389 +24/-21
parsecs to the source. Our measurement places the Orion Nebula Cluster
considerably closer than the canonical distance of 480 +/- 80 parsecs
determined by Genzel et al. (1981). A change of this magnitude in distance
lowers the luminosities of the stars in the cluster by a factor of ~ 1.5. We
briefly discuss two effects of this change--an increase in the age spread of
the pre-main sequence stars and better agreement between the zero-age
main-sequence and the temperatures and luminosities of massive stars.Comment: 10 pages, 4 figures, emulateapj, accepted to Ap
Localization of Narrowband Single Photon Emitters in Nanodiamonds
© 2016 American Chemical Society. Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors
Compact medical fluorosensor for minimally invasive tissue characterization
A compact fiber-optic point-measuring fluorosensor fully adapted to clinical studies is described. The system can use two excitation wavelengths, 337 and 405 nm, obtained from a nitrogen laser directly, or after dye laser conversion, respectively. The image intensifier used in the spectrometer can be gated with a variable time delay, allowing also time-resolved spectra to be extracted, with a time resolution of about 4 ns. Moreover, diffusely scattered white light can be spectrally recorded. The system is fully computer controlled enabling short recording times in clinical application, which are illustrated
A Finite Element Study of Electromagnetic Riveting
Electromagnetic riveting, used in some aerospace assembly processes, involves rapid deformation, leading to the finished rivet configuration. Analysis of this process is described for the case of an aluminum rivet joining typical aluminum structural elements. The analysis is based on a finite element method that includes the effects of heating, due to rapid plastic deformation of the material, on the material properties. Useful details of material deformation and thermal history and the final rivet and structure configuration and states of stress and strain are obtained. These results have significant implications in the design, implementation, and improvement of practical fastening processes in the aerospace industry
Dusty OB stars in the Small Magellanic Cloud - II: Extragalactic Disks or Examples of the Pleiades Phenomenon?
We use mid-infrared Spitzer spectroscopy and far-infrared Herschel photometry
for a sample of twenty main sequence O9--B2 stars in the Small Magellanic Cloud
(SMC) with strong 24 micron excesses to investigate the origin of the mid-IR
emission. Either debris disks around the stars or illuminated patches of dense
interstellar medium (ISM) can cause such mid-IR emission. In a companion paper,
Paper I, we use optical spectroscopy to show that it is unlikely for any of
these sources to be classical Be stars or Herbig Ae/Be stars. We focus our
analysis on debris disks and cirrus hot spots. We find three out of twenty
stars to be significantly extended in the mid-IR, establishing them as cirrus
hot spots. We then fit the IR spectral energy distributions to determine dust
temperatures and masses. We find the dust masses in the SMC stars to be larger
than for any known debris disks, although this evidence against the debris disk
hypothesis is circumstantial. Finally, we created a local comparison sample of
bright mid-IR OB stars in the Milky Way (MW) by cross-matching the WISE and
Hipparcos catalogs. All such local stars in the appropriate luminosity range
that can be unambiguously classified are young stars with optical emission
lines or are spatially resolved by WISE with sizes too large to be plausible
debris disk candidates. We conclude that the very strong mid-IR flux excesses
are most likely explained as cirrus hot spots, although we cannot rigorously
rule out that a small fraction of the sample is made up of debris disks or
transition disks. We present suggestive evidence that bow-shock heating around
runaway stars may be a contributing mechanism to the interstellar emission.
These sources, interpreted as cirrus hot spots, offer a new localised probe of
diffuse interstellar dust in a low metallicity environment. (Abridged)Comment: Accepted for publication in ApJ, 23 pages, 11 figures, 8 table
Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit
Volumes of sub-wavelength electromagnetic elements can act like homogeneous
materials: metamaterials. In analogy, sheets of optical elements such as prisms
can act ray-optically like homogeneous sheet materials. In this sense, such
sheets can be considered to be metamaterials for light rays (METATOYs).
METATOYs realize new and unusual transformations of the directions of
transmitted light rays. We study here, in the ray-optics and scalar-wave
limits, the wave-optical analog of such transformations, and we show that such
an analog does not always exist. Perhaps, this is the reason why many of the
ray-optical possibilities offered by METATOYs have never before been
considered.Comment: 10 pages, 3 figures, references update
Recommended from our members
Cool dust heating and temperature mixing in nearby star-forming galaxies
Physical conditions of the interstellar medium in galaxies are closely linked
to the ambient radiation field and the heating of dust grains. In order to
characterize dust properties in galaxies over a wide range of physical
conditions, we present here the radial surface brightness profiles of the
entire sample of 61 galaxies from Key Insights into Nearby Galaxies:
Far-Infrared Survey with Herschel (KINGFISH). The main goal of our work is the
characterization of the grain emissivities, dust temperatures, and interstellar
radiation fields responsible for heating the dust. After fitting the dust and
stellar radial profiles with exponential functions, we fit the far-infrared
spectral energy distribution (SED) in each annular region with
single-temperature modified black bodies using both variable (MBBV) and fixed
(MBBF) emissivity indices beta, as well as with physically motivated dust
models. Results show that while most SED parameters decrease with radius, the
emissivity index beta also decreases with radius in some galaxies, but in
others is increasing, or rising in the inner regions and falling in the outer
ones. Despite the fixed grain emissivity (average beta~ 2.1) of the
physically-motivated models, they are well able to accommodate flat spectral
slopes with beta<= 1. We find that flatter slopes (beta<= 1.5) are associated
with cooler temperatures, contrary to what would be expected from the usual
Tdust-beta degeneracy. This trend is related to variations in Umin since beta
and Umin are very closely linked over the entire range in Umin sampled by the
KINGFISH galaxies: low Umin is associated with flat beta<=1. Both these results
strongly suggest that the low apparent \beta values (flat slopes) in MBBV fits
are caused by temperature mixing along the line-of-sight, rather than by
intrinsic variations in grain properties. Abstract truncated for arXiv.Comment: 28 pages, 20 figures, accepted for publication in A&
- …