39 research outputs found

    Gene transfer from genetically modified plants to micro-organisms

    No full text
    International audienc

    Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria

    No full text
    International audienceThe likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgene

    Development of a new tool to improve gene transfer frequency calculations

    No full text
    International audienceGene transfer frequency can be determined experimentally on plates, but the methods currently in use do not discriminate between independent transfers and clonal multiplication of initial transformants. In order to overcome this bias, we engineered an Acinetobacter baylyi population in which cells differed by a specific molecular signature and used it as recipient in transformation experiments. Our results suggest that a corrective factor of 0.52 should be applied in order to accurately report natural transformation when using the plate counting method

    Dissimilar pH-dependent adsorption features of bovine serum albumin and alpha-chymotrypsin on mica probed by AFM

    No full text
    Correspondance auteur: S. Demanèche e-mail: [email protected] audienceWe studied bovine serum albumin (BSA) and alpha-chymotrypsin adsorption onto mica surfaces over a large pH range by atomic force microscopy (AFM) measurements in liquid. Data analyses (height, roughness and roughness factor) brought new insights on the conformation of proteins in soil environments, with mica as a model of soil phyllosilicates and non-hydrophobic surfaces. Validation of AFM approach was performed on BSA, whose behavior was previously described by nuclear magnetic resonance and infrared spectroscopic methods. Maximum adsorption was observed near the isoelectric point (IEP). A stronger interaction and a lower amount of adsorbed proteins were observed below the IER which contrasted with the progressive decrease of adsorption above the IER We then studied the adsorption of alpha-chymotrypsin, a proteolytic enzyme commonly found in soils. AFM pictures demonstrated a complete coverage of the mica surface at the IEP in contrast to the BSA case. Comparison of the AFM data with other indirect methods broadened the understanding of alpha-chymotrypsin adsorption process through the direct display of the protein adsorption patterns as a function of p

    Genetic diversity of rhizobia and plant growth promoting rhizobacteria of soil under the influence of Piliostigma reticulatum (DC.) Hochst and their impact on shrub growth

    No full text
    International audiencePiliostigma reticulatum shrub is a native legume found in fallow areas in dry and semi-dry savanna soil and is used in intercropping systems. The aim was to understand the functioning of the rhizosphere, particularly the involvement of symbiotic and free living-N fixing bacteria. Soil extracts collected from P. reticulatum roots were sampled in two contrasting areas and endophytic bacterial communities were isolated using three trap host species (F. albida, A. bivenosa and V. seyal). Potential endophytic bacteria (PEB) were characterized by RFLP, nifH PCR and by 16S rRNA gene sequencing. The subsequent behavior of P. reticulatum was monitored in vitro by measuring leaf weight, biomass and chlorophyll content, after inoculation with PEB. This approach enabled isolation of 59 bacteria belonging to different genotypes. The most abundant genera were Cohnella (27.65%) among which 11 isolates clustered together and could represent a new species closely related to C. plantaginis. The other dominant genera were Paenibacillus (21.27%), Bradyrhizobium (14.89%) and Ensifer (8.5%). The nitrogen fixing gene (nifH) was detected in 21 strains and in particular, detected in a single isolate (PZS_S04) close to Cohnella xylanilytica. The strains PZS_S05 (Ensifer) and PZG_A18 (Cohnella) significantly increased certain parameters including shoot dry weight, shrub height at 90 days and photosynthetic activity (SPAD), compared to non-inoculated controls.The result obtained showed that soil under the influence of P. reticulatum roots harbored a specific diversity of endophytic bacteria including two free living-N fixing bacteria with the potential to improve the growth of P. reticulatum in natural conditions

    Microbial soil community analyses for forensic science: Application to a blind test

    No full text
    International audienceSoil complexity, heterogeneity and transferability make it valuable in forensic investigations to help obtain clues as to the origin of an unknown sample, or to compare samples from a suspect or object with samples collected at a crime scene. In a few countries, soil analysis is used in matters from site verification to estimates of time after death. However, up to date the application or use of soil information in criminal investigations has been limited. In particular, comparing bacterial communities in soil samples could be a useful tool for forensic science. To evaluate the relevance of this approach, a blind test was performed to determine the origin of two questioned samples (one from the mock crime scene and the other from a 50:50 mixture of the crime scene and the alibi site) compared to three control samples (soil samples from the crime scene, from a context site 25 m away from the crime scene and from the alibi site which was the suspect’s home). Two biological methods were used, Ribosomal Intergenic Spacer Analysis (RISA), and 16S rRNA gene sequencing with Illumina Miseq, to evaluate the discriminating power of soil bacterial communities. Both techniques discriminated well between soils from a single source, but a combination of both techniques was necessary to show that the origin was a mixture of soils. This study illustrates the potential of applying microbial ecology methodologies in soil as an evaluative forensic tool
    corecore