261 research outputs found

    THE USE OF GLOBAL SENSITIVITY ANALYSIS FOR ASSESSING CAPABILITY OF THE MTG/FCI INSTRUMENT TO DETECT AEROSOLS

    No full text
    International audienceThe Flexible Combined Imager (FCI) is an instrument to be borne by the future geostationary meteorological satellite Meteosat Third Generation (MTG). A numerical simulator was set up to provide simulated outputs of the instrument. It includes top-of-atmosphere scene of upwelling spectral radiance obtained by a radiative transfer model in the clear atmosphere, and the transfer function of the FCI. The sensitivity of the sensor outputs to aerosol properties is studied by varying the inputs defining the scenes and their illumination. The Global Sensitivity Analysis (GSA) with the Sobol' decomposition is applied to the outputs of the simulator, yielding a ranking of the inputs with respect to their influence on the FCI numerical outputs. The results are presented for all visible and near infrared channels of the FCI for desert type of aerosols according to the OPAC database. The study highlights the most relevant channels for aerosol detection and characterization and gives assessment of the different sources of uncertainties in aerosol retrieval with such channels

    Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024-T3 aluminium alloy

    Get PDF
    Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024 aluminium alloy (AA 2024) were studied. Nucleation of 25 nm diameter nodules was observed on the ridges of the scalloped structure of degreased and desmutted AA 2024 after very short time of conversion treatment corresponding to the formation of a 12 nm thick precursor layer. Then, the composition of this layer evolved and concomitantly a chromium and zirconium outer layer deposited on top of it. Rather long-lasting anticorrosive properties were measured even for conversion coatings formed after short exposure to the conversion bath, except for the precursor layer

    Comparative analysis of the anticorrosive properties of trivalent chromium conversion coatings formed on 2024-T3 and 2024-T351 aluminium alloys

    Get PDF
    The anticorrosive properties of the trivalent chromium process (TCP) coatings were studied for a 2024 aluminium alloy (AA2024) in both T3 and T351 metallurgical states. Better corrosion resistance was measured for the TCP coated AA2024-T3 compared to AA2024-T351, which was clearly related to the surface copper coverage measured after the pre-treatments for the different samples. The differences were explained considering the reactivity of both the S-phase coarse intermetallics (IMCs) and intergranular Cu-rich precipitates during deoxidation.Large S-phase IMCs and numerous intergranular Cu-rich precipitates constituted critical metallurgical parameters for the anticorrosive properties of the TCP coating

    Influence of the alloy microstructure and surface state on the protective properties of trivalent chromium coatings grown on a 2024 aluminium alloy

    Get PDF
    The protective properties of trivalent chromium process (TCP) coatings grown on a 2024-T3 aluminium alloy were studied on the basis of electrochemical measurements performed both in sulphate and chloride solutions and neutral salt spray tests. The influence of the alloy microstructure and surface state was studied: two batches, each one characterized by its own coarse intermetallic particle distribution, and two surface states, i.e. laminated and polished, were considered. Results showed that in 0.1ñ€¯M Na2SO4, the protective properties of the TCP coatings decreased when the roughness of the initial surface increased. Furthermore, improved protective properties were observed for a TCP coating grown on a surface containing a lower amount of Al-Cu-Mg IMCs in the initial microstructure. The most plausible explanation is that a fast kinetics of coating growth, either associated to strong initial roughness or a great surface copper coverage, was detrimental for the protective properties of the coatings. In more aggressive solutions, i.e. 0.5ñ€¯M NaCl solution or for neutral salt spray tests, the differences are not significant. The findings are highly relevant for industrial applications: the results showed that variations in batches, for a same type of alloy, or in initial surface state should not be detrimental for the corrosion resistance of the TCP coated samples. However, the conversion process had to be adapted for different types of alloys, characterized by their own microstructure

    Designed Ankyrin Repeat Proteins provide insights into the structure and function of CagI and are potent inhibitors of CagA translocation by the Helicobacter pylori type IV secretion system

    Get PDF
    The bacterial human pathogen Helicobacter pylori produces a type IV secretion system ( cag T4SS) to inject the oncoprotein CagA into gastric cells. The cag T4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagI N ) prolonged by globular C-terminal domains (CagI C ). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagI C with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagI C were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagI C plays a key role in cag T4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cag T4SS, a crucial risk factor for gastric cancer development.Bases structurale du systĂšme de secretion de type IV d'Helicobacter pyloriBases structurales et molĂ©culaires de l'exploitation de l'integrin a5ß1 par le systĂšme de sĂ©crĂ©tion de type IV d'Helicobacter pylor

    Profiling the landscape of transcription, chromatin accessibility and chromosome conformation of cattle, pig, chicken and goat genomes [FAANG pilot project]

    Get PDF
    Functional annotation of livestock genomes is a critical and obvious next step to derive maximum benefit for agriculture, animal science, animal welfare and human health. The aim of the Fr-AgENCODE project is to generate multi-species functional genome annotations by applying high-throughput molecular assays on three target tissues/cells relevant to the study of immune and metabolic traits. An extensive collection of stored samples from other tissues is available for further use (FAANG Biosamples ‘FR-AGENCODE’). From each of two males and two females per species (pig, cattle, goat, chicken), strand-oriented RNA-seq and chromatin accessibility ATAC-seq assays were performed on liver tissue and on two T-cell types (CD3+CD4+&CD3+CD8+) sorted from blood (mammals) or spleen (chicken). Chromosome Conformation Capture (in situ Hi-C) was also carried out on liver. Sequencing reads from the 3 assays were processed using standard processing pipelines. While most (50–70%) RNA-seq reads mapped to annotated exons, thousands of novel transcripts and genes were found, including extensions of annotated protein-coding genes and new lncRNAs (see abstract #69857). Consistency of ATAC-seq results was confirmed by the significant proportion of called peaks in promoter regions (36–66%) and by the specific accumulation pattern of peaks around gene starts (TSS) v. gene ends (TTS). Principal Component Analyses for RNA-seq (based on quantified gene expression) and ATAC-seq (based on quantified chromatin accessibility) highlighted clusters characterised by cell type and sex in all species. From Hi-C data, we generated 40kb-resolution interaction maps, profiled a genome-wide Directionality Index and identified from 4,100 (chicken) to 12,100 (pig) topologically-associating do- mains (TADs). Correlations were reported between RNA-seq and ATAC-seq results (see abstract #71581). In summary, we present here an overview of the first multi-species and -tissue annotations of chromatin accessibility and genome architecture related to gene expression for farm animals

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore