49 research outputs found

    Characterisation of the sewage virome: comparison of NGS tools and occurrence of significant pathogens

    Full text link
    NGS techniques are excellent tools to monitor and identify viral pathogens circulating among the population with some limitations that need to be overcome, especially in complex matrices. Sewage contains a high amount of other microorganisms that could interfere when trying to sequence viruses for which random PCR amplifications are needed before NGS. The selection of appropriate NGS tools is important for reliable identification of viral diversity among the population. We have compared different NGS methodologies (Untargeted Viral Metagenomics, Target Enrichment Sequencing and Amplicon Deep Sequencing) for the detection and characterisation of viruses in urban sewage, focusing on three important human pathogens: papillomaviruses, adenoviruses and enteroviruses. A full picture of excreted viruses was obtained by applying Untargeted Viral Metagenomics, which detected members of four different vertebrate viral families in addition to bacteriophages, plant viruses and viruses infecting other hosts. Target Enrichment Sequencing, using specific vertebrate viral probes, allowed the detection of up to eight families containing human viruses, with high variety of types within the families and with a high genome coverage. By applying Amplicon Deep Sequencing, the diversity of enteroviruses, adenoviruses and papillomaviruses observed was higher than when applying the other two strategies and this technique allowed the subtyping of an enterovirus A71 C1 strain related to a brainstem encephalitis outbreak occurring at the same time in the sampling area. From the data obtained, we concluded that the different strategies studied provided different levels of analysis: TES is the best strategy to obtain a broad picture of human viruses present in complex samples such as sewage. Other NGS strategies are useful for studying the virome of complex samples when also targeting viruses infecting plants, bacteria, invertebrates or fungi (Untargeted Viral Metagenomics) or when observing the variety within a sole viral family is the objective of the study (Amplicon Deep Sequencing)

    Viral metagenomics reveals persistent as well as dietary acquired viruses in Antarctic fur seals.

    Full text link
    Viruses linked to animals inhabiting Antarctic latitudes remain poorly studied. Remote environments hosting large pinniped populations may be prone to exposure of immunologically naïve animals to new infectious agents due to increasing human presence or introduction of new animal species. Antarctic fur seals (Arctocephalus gazella) inhabiting the Western Antarctic Peninsula and the South Shetland Islands are challenged because of climate change and increased anthropogenic activity. In the present study, the fecal and serum virome of A. gazella was characterized by applying target enrichment next generation sequencing. The resulting viromes were dominated by CRESS-DNA sequences. Viruses known to infect vertebrate and invertebrate hosts were also observed in fecal samples. Fur seal picornavirus was present in all the fecal pools studied suggesting it is a prevalent virus in these species. Six different viruses presenting similarities with previously described A. gazella viruses or other otariids and mammal viruses were identified as potential new A. gazella viruses. Also, diet-derived viruses such as crustacean viruses were present in fecal content. Penguin viruses, but not fish viruses, were also detected. Obtained results contribute to a better understanding of the viral community present in these species, which is relevant for its conservation

    High prevalence of rotavirus a in raw sewage samples from Northeast Spain

    Get PDF
    Rotavirus A (RVA) is the most common virus associated with infantile gastroenteritis worldwide, being a public health threat, as it is excreted in large amounts in stool and can persist in the environment for extended periods. In this study, we performed the detection of RVA and human adenovirus (HAdV) by TaqMan qPCR and assessed the circulation of RVA genotypes in three wastewater treatment plants (WWTPs) between 2015 and 2016 in Catalonia, Spain. RVA was detected in 90% and HAdV in 100% of the WWTP samples, with viral loads ranging between 3.96 104 and 3.30 108 RT-PCR Units/L and 9.51 104 and 1.16 106 genomic copies/L, respectively. RVA VP7 and VP4 gene analysis revealed the circulation of G2, G3, G9, G12, P[4], P[8], P[9] and P[10]. Nucleotide sequencing (VP6 fragment) showed the circulation of I1 and I2 genotypes, commonly associated with human, bovine and porcine strains. It is important to mention that the RVA strains isolated from the WWTPs were different from those recovered from piglets and calves living in the same area of single sampling in 2016. These data highlight the importance of monitoring water matrices for RVA epidemiology and may be a useful tool to evaluate and predict possible emergence/reemergence of uncommon strains in a region

    Development and characterisation of highly antibiotic resistant Bartonella bacilliformis mutants

    Get PDF
    The objective was to develop and characterise in vitro Bartonella bacilliformis antibiotic resistant mutants. Three B. bacilliformis strains were plated 35 or 40 times with azithromycin, chloramphenicol, ciprofloxacin or rifampicin discs. Resistance-stability was assessed performing 5 serial passages without antibiotic pressure. MICs were determined with/without Phe-Arg-beta-Napthylamide and artesunate. Target alterations were screened in the 23S rRNA, rplD, rplV, gyrA, gyrB, parC, parE and rpoB genes. Chloramphenicol and ciprofloxacin resistance were the most difficult and easiest (>37.3 and 10.6 passages) to be selected, respectively. All mutants but one selected with chloramphenicol achieved high resistance levels. All rifampicin, one azithromycin and one ciprofloxacin mutants did not totally revert when cultured without antibiotic pressure. Azithromycin resistance was related to L4 substitutions Gln-66 --> Lys or Gly-70 --> Arg; L4 deletion Delta62-65 (Lys-Met-Tyr-Lys) or L22 insertion 83::Val-Ser-Glu-Ala-His-Val-Gly-Lys-Ser; in two chloramphenicol-resistant mutants the 23S rRNA mutation G2372A was detected. GyrA Ala-91 --> Val and Asp-95 --> Gly and GyrB Glu474 --> Lys were detected in ciprofloxacin-resistant mutants. RpoB substitutions Gln-527 --> Arg, His-540 --> Tyr and Ser-545 --> Phe plus Ser-588 --> Tyr were detected in rifampicin-resistant mutants. In 5 mutants the effect of efflux pumps on resistance was observed. Antibiotic resistance was mainly related to target mutations and overexpression of efflux pumps, which might underlie microbiological failures during treatments

    The unexplored virome of two Atlantic coast fish: contribution of next-generation sequencing to fish virology

    Get PDF
    Much of the knowledge on viruses is focused on those that can be propagated using cell-cultures or that can cause disease in humans or in economically important animals and plants. However, this only reflects a small portion of the virosphere. Therefore, in this study, we explore by targeted next-generation sequencing, how the virome varies between Atlantic horse mackerels and gilthead seabreams from fisheries and aquaculture from the center and south regions of Portugal. Viral genomes potentially pathogenic to fish and crustaceans, as well as to humans, were identified namely Astroviridae, Nodaviridae, Hepadnaviridae, Birnaviridae, Caliciviridae, and Picornaviridae families. Also bacteriophages sequences were identified corresponding to the majority of sequences detected, with Myoviridae, Podoviridae, and Siphoviridae, the most widespread families in both fish species. However, these findings can also be due to the presence of bacteria in fish tissues, or even to contamination. Overall, seabreams harbored viruses from a smaller number of families in comparison with mackerels. Therefore, the obtained data show that fish sold for consumption can harbor a high diversity of viruses, many of which are unknown, reflecting the overall uncharacterized virome of fish. While cross-species transmission of bonafide fish viruses to humans is unlikely, the finding of human pathogenic viruses in fish suggest that fish virome can be a potential threat regarding food safety

    Evaluation of PCR Approaches for Detection of Bartonella bacilliformis in Blood Samples

    Get PDF
    BACKGROUND: The lack of an effective diagnostic tool for Carrion's disease leads to misdiagnosis, wrong treatments and perpetuation of asymptomatic carriers living in endemic areas. Conventional PCR approaches have been reported as a diagnostic technique. However, the detection limit of these techniques is not clear as well as if its usefulness in low bacteriemia cases. The aim of this study was to evaluate the detection limit of 3 PCR approaches. METHODOLOGY/PRINCIPAL FINDINGS: We determined the detection limit of 3 different PCR approaches: Bartonella-specific 16S rRNA, fla and its genes. We also evaluated the viability of dry blood spots to be used as a sample transport system. Our results show that 16S rRNA PCR is the approach with a lowest detection limit, 5 CFU/muL, and thus, the best diagnostic PCR tool studied. Dry blood spots diminish the sensitivity of the assay. CONCLUSIONS/SIGNIFICANCE: From the tested PCRs, the 16S rRNA PCR-approach is the best to be used in the direct blood detection of acute cases of Carrion's disease. However its use in samples from dry blood spots results in easier management of transport samples in rural areas, a slight decrease in the sensitivity was observed. The usefulness to detect by PCR the presence of low-bacteriemic or asymptomatic carriers is doubtful, showing the need to search for new more sensible techniques

    Unveiling Viruses Associated with Gastroenteritis Using a Metagenomics Approach

    Get PDF
    Acute infectious gastroenteritis is an important illness worldwide, especially on children, with viruses accounting for approximately 70% of the acute cases. A high number of these cases have an unknown etiological agent and the rise of next generation sequencing technologies has opened new opportunities for viral pathogen detection and discovery. Viral metagenomics in routine clinical settings has the potential to identify unexpected or novel variants of viral pathogens that cause gastroenteritis. In this study, 124 samples from acute gastroenteritis patients from 2012-2014 previously tested negative for common gastroenteritis pathogens were pooled by age and analyzed by next generation sequencing (NGS) to elucidate unidentified viral infections. The most abundant sequences detected potentially associated to acute gastroenteritis were from Astroviridae and Caliciviridae families, with the detection of norovirus GIV and sapoviruses. Lower number of contigs associated to rotaviruses were detected. As expected, other viruses that may be associated to gastroenteritis but also produce persistent infections in the gut were identified including several Picornaviridae members (EV, parechoviruses, cardioviruses) and adenoviruses. According to the sequencing data, astroviruses, sapoviruses and NoV GIV should be added to the list of viral pathogens screened in routine clinical analysis

    An unidentified cluster of infection in the Peruvian Amazon region

    Get PDF
    Introduction: Bartonella bacilliformis is the etiological agent of Carrion’s disease, which is a neglected disease linked to people in low-socioeconomic populations in Andean valleys. An outbreak of B. bacilliformis was reported in a rural area of the Peruvian Amazon region. The aim of this study was to characterize this outbreak using molecular techniques. Methodology: Fifty-three blood samples from patients diagnosed with Carrion’s disease were analyzed by molecular tools, using both a Bartonella-specific polymerase chain reaction (PCR) and an universal PCR, both based on 16S rRNA gene amplification. Additional water samples from the area were also analyzed. Results: Unexpectedly, the samples were positive only when the universal PCR was used. Although environmental contamination cannot be ruled out, the results showed that Sphingomonas faeni was the possible causative agent of this outbreak, and that water was the most feasible infection source. Conclusions: Diagnosis by clinical criteria or microscopy may lead to misdiagnosis. There is a need to include molecular tools in the routine diagnosis of febrile syndromes, including Carrion’s disease

    NGS techniques reveal a high diversity of RNA viral pathogens and papillomaviruses in fresh produce and irrigation water

    Full text link
    Fresh fruits and vegetables are susceptible to microbial contamination at every stage of the food production chain, and as a potential source of pathogens, irrigation water quality is a critical factor. Next-generation sequencing (NGS) techniques have been flourishing and expanding to a wide variety of fields. However, their application in food safety remains insufficiently explored, and their sensitivity requires improvement. In this study, quantitative polymerase chain reaction (qPCR) assays showed low but frequent contamination of common circulating viral pathogens, which were found in 46.9% of samples of fresh produce: 6/12 lettuce samples, 4/12 strawberries samples, and 5/8 parsley samples. Furthermore, the application of two different NGS approaches, target enrichment sequencing (TES) for detecting viruses that infect vertebrates and amplicon deep sequencing (ADS), revealed a high diversity of viral pathogens, especially Norovirus (NoV) and Human Papillomavirus (HPV), in fresh produce and irrigation water. All NoV and HPV types found in fresh fruit and vegetable samples were also detected in irrigation water sources, indicating that these viruses are common circulating pathogens in the population and that irrigation water may be the most probable source of viral pathogens in food samples

    Exploring the diversity of coronavirus in sewage during COVID-19 pandemic: Don't miss the forest for the trees

    Get PDF
    Coronavirus; Secuenciación de nueva generación; Viroma de aguas residualesCoronavirus; Seqüenciació de nova generació; Viroma d'aigües residualsCoronavirus; Next generation sequencing; Sewage viromeIn the wake of the COVID-19 pandemic, the use of next generation sequencing (NGS) has proved to be an important tool for the genetic characterization of SARS-CoV-2 from clinical samples. The use of different available NGS tools applied to wastewater samples could be the key for an in-depth study of the excreted virome, not only focusing on SARS-CoV-2 circulation and typing, but also to detect other potentially pandemic viruses within the same family. With this aim, 24-hours composite wastewater samples from March and July 2020 were sequenced by applying specific viral NGS as well as target enrichment NGS. The full virome of the analyzed samples was obtained, with human Coronaviridae members (CoV) present in one of those samples after applying the enrichment. One contig was identified as HCoV-OC43 and 8 contigs as SARS-CoV-2. CoVs from other animal hosts were also detected when applying this technique. These contigs were compared with those obtained from contemporary clinical specimens by applying the same target enrichment approach. The results showed that there is a co-circulation in urban areas of human and animal coronaviruses infecting domestic animals and rodents. NGS enrichment-based protocols might be crucial to describe the occurrence and genetic characteristics of SARS-CoV-2 and other Coronaviridae family members within the excreted virome present in wastewater.This study was partially supported by the Ministry of Science, Innovation and Universities (AGL2017-86797-C2-1-R) through the University of Barcelona and the Direcció General de Recerca i Innovació en Salut (DGRIS) Catalan Health Ministry Generalitat de Catalunya through Vall d'Hebron Research Institute (VHIR). Sílvia Bofill-Mas is a Serra-Hunter fellow at the University of Barcelona
    corecore