2,583 research outputs found

    Elucidating Nature’s Solutions to Heart, Lung, and Blood Diseases and Sleep Disorders

    Get PDF
    Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms that responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute (NHLBI) released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this Special Article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature’s solutions to heart, lung, blood, and sleep disorders through future research in this area

    Elucidating Nature’s Solutions to Heart, Lung, and Blood Diseases and Sleep Disorders

    Get PDF
    Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms that responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute (NHLBI) released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this Special Article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature’s solutions to heart, lung, blood, and sleep disorders through future research in this area

    Activation of PI3-Kinase Is Required for AMPA Receptor Insertion during LTP of mEPSCs in Cultured Hippocampal Neurons

    Get PDF
    AbstractHippocampal CA1 homosynaptic long-term potentiation (LTP) is expressed specifically at activated synapses. Increased insertion of postsynaptic α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) appears to be crucial for CA1 LTP. However, the mechanism underlying AMPAR insertion during LTP remains largely unknown. We now report that phosphatidylinositol 3-kinase (PI3K) is complexed with AMPARs at synapses and activated by selective stimulation of synaptic N-methyl-D-aspartate (NMDA) receptors. Activation of the AMPAR-associated PI3K is required for the increased cell surface expression of AMPARs and LTP. Thus, our results strongly suggest that the AMPAR-PI3K complex may constitute a critical molecular signal responsible for AMPAR insertion at activated CA1 synapses during LTP, and consequently, this lipid kinase may serve to determine the polarity of NMDA receptor-dependent synaptic plasticity

    Physical activity coaching for adults with mobility limitations: protocol for the ComeBACK pragmatic hybrid effectiveness-implementation type 1 randomised controlled trial

    Get PDF
    INTRODUCTION: Mobility limitation is common and often results from neurological and musculoskeletal health conditions, ageing and/or physical inactivity. In consultation with consumers, clinicians and policymakers, we have developed two affordable and scalable intervention packages designed to enhance physical activity for adults with self-reported mobility limitations. Both are based on behaviour change theories and involve tailored advice from physiotherapists. METHODS AND ANALYSIS: This pragmatic hybrid effectiveness-implementation type 1 randomised control trial (n=600) will be undertaken among adults with self-reported mobility limitations. It aims to estimate the effects on physical activity of: (1) an enhanced 6-month intervention package (one face-to-face physiotherapy assessment, tailored physical activity plan, physical activity phone coaching from a physiotherapist, informational/motivational resources and activity monitors) compared with a less intensive 6-month intervention package (single session of tailored phone advice from a physiotherapist, tailored physical activity plan, unidirectional text messages, informational/motivational resources); (2) the enhanced intervention package compared with no intervention (6-month waiting list control group); and (3) the less intensive intervention package compared with no intervention (waiting list control group). The primary outcome will be average steps per day, measured with the StepWatch Activity Monitor over a 1-week period, 6 months after randomisation. Secondary outcomes include other physical activity measures, measures of health and functioning, individualised mobility goal attainment, mental well-being, quality of life, rate of falls, health utilisation and intervention evaluation. The hybrid effectiveness-implementation design (type 1) will be used to enable the collection of secondary implementation outcomes at the same time as the primary effectiveness outcome. An economic analysis will estimate the cost-effectiveness and cost-utility of the interventions compared with no intervention and to each other. ETHICS AND DISSEMINATION: Ethical approval has been obtained by Sydney Local Health District, Royal Prince Alfred Zone. Dissemination will be via publications, conferences, newsletters, talks and meetings with health managers. TRIAL REGISTRATION NUMBER: ACTRN12618001983291

    PET-CT Surveillance versus Neck Dissection in Advanced Head and Neck Cancer

    Get PDF
    BACKGROUND: The role of image-guided surveillance as compared with planned neck dissection in the treatment of patients with squamous-cell carcinoma of the head and neck who have advanced nodal disease (stage N2 or N3) and who have received chemoradiotherapy for primary treatment is a matter of debate. METHODS: In this prospective, randomized, controlled trial, we assessed the noninferiority of positron-emission tomography–computed tomography (PET-CT)–guided surveillance (performed 12 weeks after the end of chemoradiotherapy, with neck dissection performed only if PET-CT showed an incomplete or equivocal response) to planned neck dissection in patients with stage N2 or N3 disease. The primary end point was overall survival. RESULTS: From 2007 through 2012, we recruited 564 patients (282 patients in the planned-surgery group and 282 patients in the surveillance group) from 37 centers in the United Kingdom. Among these patients, 17% had nodal stage N2a disease and 61% had stage N2b disease. A total of 84% of the patients had oropharyngeal cancer, and 75% had tumor specimens that stained positive for the p16 protein, an indicator that human papillomavirus had a role in the causation of the cancer. The median follow-up was 36 months. PET-CT–guided surveillance resulted in fewer neck dissections than did planned dissection surgery (54 vs. 221); rates of surgical complications were similar in the two groups (42% and 38%, respectively). The 2-year overall survival rate was 84.9% (95% confidence interval [CI], 80.7 to 89.1) in the surveillance group and 81.5% (95% CI, 76.9 to 86.3) in the planned-surgery group. The hazard ratio for death slightly favored PET-CT–guided surveillance and indicated noninferiority (upper boundary of the 95% CI for the hazard ratio, <1.50; P=0.004). There was no significant difference between the groups with respect to p16 expression. Quality of life was similar in the two groups. PET-CT–guided surveillance, as compared with neck dissection, resulted in savings of £1,492 (approximately $2,190 in U.S. dollars) per person over the duration of the trial. CONCLUSIONS: Survival was similar among patients who underwent PET-CT–guided surveillance and those who underwent planned neck dissection, but surveillance resulted in considerably fewer operations and it was more cost-effective. (Funded by the National Institute for Health Research Health Technology Assessment Programme and Cancer Research UK; PET-NECK Current Controlled Trials number, ISRCTN13735240.

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article

    Mechanistic insight into the pathology of polyalanine expansion disorders revealed by a mouse model for x linked hypopituitarism

    Get PDF
    Extent: 9 p.Polyalanine expansions in transcription factors have been associated with eight distinct congenital human diseases. It is thought that in each case the polyalanine expansion causes misfolding of the protein that abrogates protein function. Misfolded proteins form aggregates when expressed in vitro; however, it is less clear whether aggregation is of relevance to these diseases in vivo. To investigate this issue, we used targeted mutagenesis of embryonic stem (ES) cells to generate mice with a polyalanine expansion mutation in Sox3 (Sox3-26ala) that is associated with X-linked Hypopituitarism (XH) in humans. By investigating both ES cells and chimeric mice, we show that endogenous polyalanine expanded SOX3 does not form protein aggregates in vivo but rather is present at dramatically reduced levels within the nucleus of mutant cells. Importantly, the residual mutant protein of chimeric embryos is able to rescue a block in gastrulation but is not sufficient for normal development of the hypothalamus, a region that is functionally compromised in Sox3 null embryos and individuals with XH. Together, these data provide the first definitive example of a disease-relevant PA mutant protein that is both nuclear and functional, thereby manifesting as a partial loss-of-function allele.James Hughes Sandra Piltz, Nicholas Rogers, Dale McAninch, Lynn Rowley and Paul Thoma

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore