56 research outputs found

    A new permanent cell line derived from the bank vole (Myodes glareolus) as cell culture model for zoonotic viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approximately 60% of emerging viruses are of zoonotic origin, with three-fourths derived from wild animals. Many of these zoonotic diseases are transmitted by rodents with important information about their reservoir dynamics and pathogenesis missing. One main reason for the gap in our knowledge is the lack of adequate cell culture systems as models for the investigation of rodent-borne (robo) viruses <it>in vitro</it>. Therefore we established and characterized a new cell line, BVK168, using the kidney of a bank vole, <it>Myodes glareolus, </it>the most abundant member of the <it>Arvicolinae </it>trapped in Germany.</p> <p>Results</p> <p>BVK168 proved to be of epithelial morphology expressing tight junctions as well as adherence junction proteins. The BVK168 cells were analyzed for their infectability by several arbo- and robo-viruses: Vesicular stomatitis virus, vaccinia virus, cowpox virus, Sindbis virus, Pixuna virus, Usutu virus, Inkoo virus, Puumalavirus, and Borna disease virus (BDV). The cell line was susceptible for all tested viruses, and most interestingly also for the difficult to propagate BDV.</p> <p>Conclusion</p> <p>In conclusion, the newly established cell line from wildlife rodents seems to be an excellent tool for the isolation and characterization of new rodent-associated viruses and may be used as <it>in vitro-</it>model to study properties and pathogenesis of these agents.</p

    Prevalence and Genotype Allocation of Pathogenic Leptospira Species in Small Mammals from Various Habitat Types in Germany

    Get PDF
    Small mammals serve as most important reservoirs for Leptospira spp., the causative agents of Leptospirosis, which is one of the most neglected and widespread zoonotic diseases worldwide. The knowledge about Leptospira spp. occurring in small mammals from Germany is scarce. Thus, this study's objectives were to investigate the occurrence of Leptospira spp. and the inherent sequence types in small mammals from three different study sites: a forest in southern Germany (site B1);a National Park in south-eastern Germany (site B2) and a renaturalised area, in eastern Germany (site S) where small mammals were captured. DNA was extracted from kidneys of small mammals and tested for Leptospira spp. by real-time PCR. Positive samples were further analysed by duplex and conventional PCRs. For 14 positive samples, multi locus sequence typing (MLST) was performed. Altogether, 1213 small mammals were captured: 216 at site B1, 456 at site B2 and 541 at site S belonging to following species: Sorex (S.) araneus, S. coronatus, Apodemus (A.) flavicollis, Myodes glareolus, Microtus (Mi.) arvalis, Crocidura russula, Arvicola terrestris, A. agrarius, Mustela nivalis, Talpa europaea, and Mi. agrestis. DNA of Leptospira spp. was detected in 6% of all small mammals. At site B1, 25 small mammals (11.6%), at site B2, 15 small mammals (3.3%) and at site S, 33 small mammals (6.1%) were positive for Leptospira spp. Overall, 54 of the positive samples were further determined as L. kirschneri, nine as L. interrogans and four as L. borgpetersenii while five real-time PCR-positive samples could not be further determined by conventional PCR. MLST results revealed focal occurrence of L. interrogans and L. kirschneri sequence type (ST) 117 while L. kirschneri ST 110 was present in small mammals at all three sites. Further, this study provides evidence for a particular host association of L. borgpetersenii to mice of the genus Apodemus

    Identification of factors influencing the Puumala virus seroprevalence within its reservoir in aMontane Forest Environment.

    Get PDF
    Puumala virus (PUUV) is a major cause of mild to moderate haemorrhagic fever with renal syndrome and is transmitted by the bank vole (Myodes glareolus). There has been a high cumulative incidence of recorded human cases in South-eastern Germany since 2004 when the region was first recognized as being endemic for PUUV. As the area is well known for outdoor recreation and the Bavarian Forest National Park (BFNP) is located in the region, the increasing numbers of recorded cases are of concern. To understand the population and environmental effects on the seroprevalence of PUUV in bank voles we trapped small mammals at 23 sites along an elevation gradient from 317 to 1420m above sea level. Generalized linear mixed effects models(GLMEM) were used to explore associations between the seroprevalence of PUUV in bank voles and climate and biotic factors. We found that the seroprevalence of PUUV was low (6%-7%) in 2008 and 2009, and reached 29% in 2010. PUUV seroprevalence was positively associated with the local species diversity and deadwood layer, and negatively associated with mean annual temperature, mean annual solar radiation, and herb layer. Based on these findings, an illustrative risk map for PUUV seroprevalence prediction in bank voles was created for an area of the national park. The map will help when planning infrastructure in the national park (e.g., huts, shelters, and trails)

    Re-emergence of tularemia in Germany: Presence of <it>Francisella tularensis </it>in different rodent species in endemic areas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tularemia re-emerged in Germany starting in 2004 (with 39 human cases from 2004 to 2007) after over 40 years of only sporadic human infections. The reasons for this rise in case numbers are unknown as is the possible reservoir of the etiologic agent <it>Francisella (F.) tularensis</it>. No systematic study on the reservoir situation of <it>F. tularensis </it>has been published for Germany so far.</p> <p>Methods</p> <p>We investigated three areas six to ten months after the initial tularemia outbreaks for the presence of <it>F. tularensis </it>among small mammals, ticks/fleas and water. The investigations consisted of animal live-trapping, serologic testing, screening by real-time-PCR and cultivation.</p> <p>Results</p> <p>A total of 386 small mammals were trapped. <it>F. tularensis </it>was detected in five different rodent species with carrier rates of 2.04, 6.94 and 10.87% per trapping area. None of the ticks or fleas (n = 432) tested positive for <it>F. tularensis</it>. We were able to demonstrate <it>F. tularensis-</it>specific DNA in one of 28 water samples taken in one of the outbreak areas.</p> <p>Conclusion</p> <p>The findings of our study stress the need for long-term surveillance of natural foci in order to get a better understanding of the reasons for the temporal and spatial patterns of tularemia in Germany.</p

    Cooperative Research and Infectious Disease Surveillance: A 2021 Epilogue.

    Get PDF
    As the world looks forward to turning a corner in the face of the COVID-19 pandemic, it becomes increasingly evident that international research cooperation and dialogue is necessary to end this global catastrophe. Last year, we initiated a research topic: "Infectious Disease Surveillance: Cooperative Research in Response to Recent Outbreaks, Including COVID-19," which aimed at featuring manuscripts focused on the essential link between surveillance and cooperative research for emerging and endemic diseases, and highlighting scientific partnerships in countries under-represented in the scientific literature. Here we recognize the body of work published from our manuscript call that resulted in over 50 published papers. This current analysis describes articles and authors from a variety of funded and unfunded international sources. The work exemplifies successful research and publications which are frequently cooperative, and may serve as a basis to model further global scientific engagements

    Operationalizing Cooperative Research for Infectious Disease Surveillance: Lessons Learned and Ways Forward.

    Get PDF
    The current COVID-19 pandemic demonstrates the need for urgent and on-demand solutions to provide diagnostics, treatment and preventative measures for infectious disease outbreaks. Once solutions are developed, meeting capacities depends on the ability to mitigate technical, logistical and production issues. While it is difficult to predict the next outbreak, augmenting investments in preparedness, such as infectious disease surveillance, is far more effective than mustering last-minute response funds. Bringing research outputs into practice sooner rather than later is part of an agile approach to pivot and deliver solutions. Cooperative multi- country research programs, especially those funded by global biosecurity programs, develop capacity that can be applied to infectious disease surveillance and research that enhances detection, identification, and response to emerging and re-emerging pathogens with epidemic or pandemic potential. Moreover, these programs enhance trust building among partners, which is essential because setting expectation and commitment are required for successful research and training. Measuring research outputs, evaluating outcomes and justifying continual investments are essential but not straightforward. Lessons learned include those related to reducing biological threats and maturing capabilities for national laboratory diagnostics strategy and related health systems. Challenges, such as growing networks, promoting scientific transparency, data and material sharing, sustaining funds and developing research strategies remain to be fully resolved. Here, experiences from several programs highlight successful partnerships that provide ways forward to address the next outbreak

    Building Scientific Capability and Reducing Biological Threats: The Effect of Three Cooperative Bio-Research Programs in Kazakhstan.

    Get PDF
    Cooperative research programs aimed at reducing biological threats have increased scientific capabilities and capacities in Kazakhstan. The German Federal Foreign Office's German Biosecurity Programme, the United Kingdom's International Biological Security Programme and the United States Defense Threat Reduction Agency's Biological Threat Reduction Program provide funding for partner countries, like Kazakhstan. The mutual goals of the programs are to reduce biological threats and enhance global health security. Our investigation examined these cooperative research programs, summarizing major impacts they have made, as well as common successes and challenges. By mapping various projects across the three programs, research networks are highlighted which demonstrate best communication practices to share results and reinforce conclusions. Our team performed a survey to collect results from Kazakhstani partner scientists on their experiences that help gain insights into enhancing day-to-day approaches to conducting cooperative scientific research. This analysis will serve as a basis for a capability maturity model as used in industry, and in addition builds synergy for future collaborations that will be essential for quality and sustainment

    Geographical Distribution and Genetic Diversity of Bank Vole Hepaciviruses in Europe

    Get PDF
    The development of new diagnostic methods resulted in the discovery of novel hepaciviruses in wild populations of the bank vole (Myodes glareolus, syn. Clethrionomys glareolus). The naturally infected voles demonstrate signs of hepatitis similar to those induced by hepatitis C virus (HCV) in humans. The aim of the present research was to investigate the geographical distribution of bank vole-associated hepaciviruses (BvHVs) and their genetic diversity in Europe. Real-time reverse transcription polymerase chain reaction (RT-qPCR) screening revealed BvHV RNA in 442 out of 1838 (24.0%) bank voles from nine European countries and in one of seven northern red-backed voles (Myodes rutilus, syn. Clethrionomys rutilus). BvHV RNA was not found in any other small mammal species (n = 23) tested here. Phylogenetic and isolation-by-distance analyses confirmed the occurrence of both BvHV species (Hepacivirus F and Hepacivirus J) and their sympatric occurrence at several trapping sites in two countries. The broad geographical distribution of BvHVs across Europe was associated with their presence in bank voles of different evolutionary lineages. The extensive geographical distribution and high levels of genetic diversity of BvHVs, as well as the high population fluctuations of bank voles and occasional commensalism in some parts of Europe warrant future studies on the zoonotic potential of BvHVs.Peer reviewe

    Hantaviren: Eine potentielle Gefahr als Folge der ErderwÀrmung? - Anmerkungen

    No full text
    Die Meldungen von klinisch auffĂ€lligen Hantavirus-Infektionen bei Menschen lagen in Deutschland von 2001 bis 2003 bei 106 bis 172 FĂ€llen pro Jahr. Seit 2005 sind die Meldungen schwankend aber deutlich angestiegen; der höchste Wert wurde 2012 mit 2370 FĂ€llen registriert. Eine Zunahme der Infektionen wird auch in anderen europĂ€ischen LĂ€ndern beobachtet. Das Auftreten von Hantaviren ist eng mit KleinsĂ€ugern (u.a. MĂ€use, Ratten und SpitzmĂ€use) assoziiert. Die meisten FĂ€lle werden in Deutschland durch das Puumala-Orthohantavirus (PUUV) verursacht, das von der Rötelmaus (Myodes glareolus) ĂŒbertragen wird. Die Untersuchungen in Waldgebieten lassen eine Korrelation zwischen der Anzahl der Infektionen und dem Anstieg der MĂ€usepopulation erkennen. Dies kann z.B. durch Buchenmast bedingt sein. Folgende Gegenden wurden als endemische Gebiete fĂŒr PUUV-Infektionen identifiziert: Baden-WĂŒrttemberg, Bayern, Niedersachsen, Nordrhein-Westfalen und Hessen. Hantaviruses: Potential hazard as a result of global warming? – Remarks. The reports of clinically registered human hantavirus infections in Germany were between 106 and 172 cases per year from 2001 to 2003. Since 2005 the numbers of reported cases have been fluctuating but nevertheless were significantly increasing; the highest value was registered in 2012 with 2370 cases. An increase of human infections has also been observed in other European countries. The occurrence of hantaviruses is closely associated with small mammals (including mice, rats and shrews). Most cases in Germany are caused by the Puumala Orthohantavirus (PUUV), which is transmitted by bank voles (Myodes glareolus). The investigations in forest areas revealed a correlation between the number of infections and the increase in mouse populations. This can e.g. be connected with strong beech masts. The following areas have been identified as endemic areas for PUUV infections: Baden-WĂŒrttemberg, Bavaria, Lower Saxony, North Rhine-Westphalia and Hesse
    • 

    corecore