3,322 research outputs found

    ESTIMATION OF EXTERNAL COSTS OF ELECTRICITY GENERATION USING EXTERNE MODEL

    Get PDF
    The external costs of electricity generation can be characterised by the resulting social and environmental impacts. The most significant impacts are the air pollutions impact on health, built in environment, crops, forests, agricultural areas and on global warming. The primary impact considered is the air pollution’s effect on human health. The monetised value of the health impact, the external costs are calculated for two regional coal power plants, the effects are examined on the EU level with the ExternE methodology.External costs, human health, monetized environmental impacts, energy production, coal power plants, air pollution, Environmental Economics and Policy, Health Economics and Policy, Research Methods/ Statistical Methods,

    Optical Coherence Tomography Angiography Features of Iris Racemose Hemangioma in 4 Cases.

    Get PDF
    Importance: Optical coherence tomography angiography (OCTA) allows visualization of iris racemose hemangioma course and its relation to the normal iris microvasculature. Objective: To describe OCTA features of iris racemose hemangioma. Design, Setting, and Participants: Descriptive, noncomparative case series at a tertiary referral center (Ocular Oncology Service of Wills Eye Hospital). Patients diagnosed with unilateral iris racemose hemangioma were included in the study. Main Outcomes and Measures: Features of iris racemose hemangioma on OCTA. Results: Four eyes of 4 patients with unilateral iris racemose hemangioma were included in the study. Mean patient age was 50 years, all patients were white, and Snellen visual acuity was 20/20 in each case. All eyes had sectoral iris racemose hemangioma without associated iris or ciliary body solid tumor on clinical examination and ultrasound biomicroscopy. By anterior segment OCT, the racemose hemangioma was partially visualized in all cases. By OCTA, the hemangioma was clearly visualized as a uniform large-caliber vascular tortuous loop with intense flow characteristics superimposed over small-caliber radial iris vessels against a background of low-signal iris stroma. The vascular course on OCTA resembled a light bulb filament (filament sign), arising from the peripheral iris (base of light bulb) and forming a tortuous loop on reaching its peak (midfilament) near the pupil (n = 3) or midzonal iris (n = 1), before returning to the peripheral iris (base of light bulb). Intravenous fluorescein angiography performed in 1 eye depicted the iris hemangioma; however, small-caliber radial iris vessels were more distinct on OCTA than intravenous fluorescein angiography. Conclusions and Relevance: Optical coherence tomography angiography is a noninvasive vascular imaging modality that clearly depicts the looping course of iris racemose hemangioma. Optical coherence tomography angiography depicted fine details of radial iris vessels, not distinct on intravenous fluorescein angiography

    Free-form lensing implications for the collision of dark matter and gas in the frontier fields cluster MACS J0416.1-2403

    Get PDF
    We present a free-form mass reconstruction of the massive lensing cluster MACS J0416.1-2403 using the latest Hubble Frontier Fields data. Our free-form method finds that the extended lensing pattern is generated by two elongated, closely projected clusters of similar mass. Our lens model identifies new lensed images with which we improve the accuracy of the dark matter distribution. We find that the bimodal mass distribution is nearly coincident with the bimodal X-ray emission, but with the two dark matter peaks lying closer together than the centroids of the X-ray emission. We can reproduce this behaviour with our hydrodynamical model, concluding that the clusters are significantly deflected around each other with the plane of the collision lying close to the line of sight. The projected mass profiles of both subclusters are well constrained in the region 30-165 kpc because of the many interior lensed images, leading to surprisingly flat mass profiles of both components at distances 30-100 kpc from the centre, in agreement with recent simulations of self-interacting dark matter. Using N-body simulations, we discuss the extent to which this may be generated by projection effects in our model as the cores graze each other. The relative velocity between the two cores is estimated to be about 1200 km s-1 and mostly along the line of sight so that our simulation is consistent with the relative redshift difference between the two cD galaxies (δz ≈ 0.04).JMD acknowledges support of the consolider project CAD2010-00064 and AYA2012-39475-C02-01 funded by the Ministerio de Economia y Competitividad.Peer Reviewe

    Optical Coherence Tomography of Retinal and Choroidal Tumors

    Get PDF
    Optical coherence tomography (OCT) has revolutionized the field of ophthalmology since its introduction 20 years ago. Originally intended primarily for retina specialists to image the macula, it has found its role in other subspecialties that include glaucoma, cornea, and ocular oncology. In ocular oncology, OCT provides axial resolution to approximately 7 microns with cross-sectional images of the retina, delivering valuable information on the effects of intraocular tumors on the retinal architecture. Some effects include retinal edema, subretinal fluid, retinal atrophy, photoreceptor loss, outer retinal thinning, and retinal pigment epithelial detachment. With more advanced technology, OCT now provides imaging deeper into the choroid using a technique called enhanced depth imaging. This allows characterization of the thickness and reflective quality of small (<3 mm thick) choroidal lesions including choroidal nevus and melanoma. Future improvements in image resolution and depth will allow better understanding of the mechanisms of visual loss, tumor growth, and tumor management

    Origin of intermittent accretion-powered X-ray oscillations in neutron stars with millisecond spin periods

    Full text link
    We have shown previously that many of the properties of persistent accretion-powered millisecond pulsars can be understood if their X-ray emitting areas are near their spin axes and move as the accretion rate and structure of the inner disk vary. Here we show that this "nearly aligned moving spot model" may also explain the intermittent accretion-powered pulsations that have been detected in three weakly magnetic accreting neutron stars. We show that movement of the emitting area from very close to the spin axis to about 10 degrees away can increase the fractional rms amplitude from less than about 0.5 percent, which is usually undetectable with current instruments, to a few percent, which is easily detectable. The second harmonic of the spin frequency usually would not be detected, in agreement with observations. The model produces intermittently detectable oscillations for a range of emitting area sizes and beaming patterns, stellar masses and radii, and viewing directions. Intermittent oscillations are more likely in stars that are more compact. In addition to explaining the sudden appearance of accretion-powered millisecond oscillations in some neutron stars with millisecond spin periods, the model explains why accretion-powered millisecond oscillations are relatively rare and predicts that the persistent accretion-powered millisecond oscillations of other stars may become undetectable for brief intervals. It suggests why millisecond oscillations are frequently detected during the X-ray bursts of some neutron stars but not others and suggests mechanisms that could explain the occasional temporal association of intermittent accretion-powered oscillations with thermonuclear X-ray bursts.Comment: 5 pages, 1 figure; includes additional discussion and updated references; accepted for publication in ApJ

    Investigation of the Crust of the Pannonian Basin, Hungary Using Low-Altitude CHAMP Horizontal Gradient Magnetic Anomalies

    Get PDF
    The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. It is some 600 by 500 km in area and centered on Hungary. This area was chosen since it has one of the thinnest continental crusts in Europe and is the region of complex tectonic structures. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The SWARM constellation, scheduled to be launched next year, will have two lower altitude satellites flying abreast, with a separation of between ca. 150 to 200 km. to record the horizontal magnetic gradient. Since the CHAMP satellite has been in orbit for eight years and has obtained an extensive range of data, both vertically and horizontally there is a large enough data base to compute the horizontal magnetic gradients over the Pannonian Basin region using these many CHAMP orbits. We recomputed a satellite magnetic anomaly map, using the spherical-cap method of Haines (1985), the technique of Alsdorf et al. (1994) and from spherical harmonic coefficients of MF6 (Maus et aI., 2008) employing the latest and lowest altitude CHAMP data. We then computed the horizontal magnetic anomaly gradients (Kis and Puszta, 2006) in order to determine how these component data will improve our interpretation and to preview what the SW ARM mission will reveal with reference to the horizontal gradient anomalies. The gradient amplitude of an 1000 km northeast-southwest profile through our horizontal component anomaly map varied from 0 to 0.025 nT/km with twin positive anomalies (0.025 and 0.023 nT/km) separated by a sharp anomaly negative at o nT/km. Horizontal gradient indicate major magnetization boundaries in the crust (Dole and Jordan, 1978 and Cordell and Grauch, 1985). Our gradient anomaly was modeled with a twodimensional body and the anomaly, of some 200 km, correlates with a 200 km area of crustal thinning in the southwestern Pannonian Basin

    Invasive predators affect community-wide pollinator visitation

    Get PDF
    Disruption of plant–pollinator interactions by invasive predators is poorly understood but may pose a critical threat for native ecosystems. In a multiyear field experiment in Hawai’i, we suppressed abundances of globally invasive predators and then observed insect visitation to flowers of six native plant species. Three plant species are federally endangered (Haplostachys haplostachya, Silene lanceolata, Tetramolopium arenarium) and three are common throughout their range (Bidens menziesii, Dubautia linearis, Sida fallax). Insect visitors were primarily generalist pollinators, including taxa that occur worldwide such as solitary bees (e.g., Lasioglossum impavidum), social bees (e.g., Apis mellifera), and syrphid flies (e.g., Allograpta exotica). We found that suppressing invasive rats (Rattus rattus), mice (Mus musculus), ants (Linepithema humile, Tapinoma melanocephalum), and yellowjacket wasps (Vespula pensylvanica) had positive effects on pollinator visitation to plants in 16 of 19 significant predator–pollinator–plant interactions. We found only positive effects of suppressing rats and ants, and both positive and negative effects of suppressing mice and yellowjacket wasps, on the frequency of interactions between pollinators and plants. Model results predicted that predator eradication could increase the frequency of insect visitation to flowering species, in some cases by more than 90%. Previous results from the system showed that these flowering species produced significantly more seed when flowers were allowed to outcross than when flowers were bagged to exclude pollinators, indicating limited autogamy. Our findings highlight the potential benefits of suppression or eradication of invasive rodents, ants, and yellowjackets to reverse pollination disruption, particularly in locations with high numbers of at-risk plant species or already imperiled pollinator populations

    Complete Genome Sequence of \u3ci\u3eRickettsia parkeri\u3c/i\u3e Strain Black Gap

    Get PDF
    A unique genotype of Rickettsia parkeri, designated R. parkeri strain Black Gap, has thus far been associated exclusively with the North American tick, Dermacentor parumapertus. The compete genome consists of a single circular chromosome with 1,329,522 bp and a G+C content of 32.5%
    corecore