50 research outputs found

    What next? Rewilding as a radical future for the British countryside

    Get PDF
    Rewilding is an optimistic environmental agenda to reverse the loss of biodiversity and reconnect society with nature. This chapter explores Britain’s ecological history, back to the Last Interglacial before the arrival of modern humans, when the climate was similar to today, to analyse how conservationists can learn from the past to rewild the ecosystems of the present and prepare for an uncertain future. Because there is no single point in history that should or could be recreated, rewilding focuses on re-establishing naturally dynamic ecological processes that, through an appropriate sequence of species reintroductions, attempts to move the ecosystem towards a more appropriately biodiverse and functional state. A state that is self-sustaining in the present climate, and that projected for the near future. Specifically, this chapter explores a rewilding solution to conservation challenges associated with over-grazing, limited germination niche availability, and river dynamics: the reintroduction of wolves, wild boar, and beaver respectively. This sequence of reintroductions is suggested to be complimentary, each altering ecosystem dynamics to facilitate the return of the next. Evidence indicates wolves will reduce deer abundance and re-distribute browsing intensity promoting tree regeneration, particularly in riparian areas, increasing woodland availability to the more habitat-dependent wild boar and beaver. An important message behind rewilding is that a rich biodiversity with all guilds well represented, including the ones that polarize public opinion, such as large predators, are important components of ecosystem service rich and self-sustaining ecosystems, particularly in core areas

    Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide

    Get PDF
    Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of species’ evolutionary adaptations, ecological and functional roles, and trophic interactions. However, the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals (“MammalDIET”). Diet information was digitized from two global and cladewide data sources and errors of data entry by multiple data recorders were assessed. We then developed a hierarchical extrapolation procedure to fill-in diet information for species with missing information. Missing data were extrapolated with information from other taxonomic levels (genus, other species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally, we grouped mammal species into trophic levels and dietary guilds, and their species richness as well as their proportion of total richness were mapped at a global scale for those diet categories with good validation results. The success rate of correctly digitizing data was 94%, indicating that the consistency in data entry among multiple recorders was high. Data sources provided species-level diet information for a total of 2033 species (38% of all 5364 terrestrial mammal species, based on the IUCN taxonomy). For the remaining 3331 species, diet information was mostly extrapolated from genus-level diet information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external validation showed that: (1) extrapolations were most reliable for primary food items; (2) several diet categories (“Animal”, “Mammal”, “Invertebrate”, “Plant”, “Seed”, “Fruit”, and “Leaf”) had high proportions of correctly predicted diet ranks; and (3) the potential of correctly extrapolating specific diet categories varied both within and among clades. Global maps of species richness and proportion showed congruence among trophic levels, but also substantial discrepancies between dietary guilds. MammalDIET provides a comprehensive, unique and freely available dataset on diet preferences for all terrestrial mammals worldwide. It enables broad-scale analyses for specific trophic levels and dietary guilds, and a first assessment of trait conservatism in mammalian diet preferences at a global scale. The digitalization, extrapolation and validation procedures could be transferable to other trait data and taxa

    Mammal predator and prey species richness are strongly linked at macroscales

    Get PDF
    Predator-prey interactions play an important role for species composition and community dynamics at local scales, but their importance in shaping large-scale gradients of species richness remains unexplored. Here, we use global range maps, structural equation models (SEM), and comprehensive databases of dietary preferences and body masses of all terrestrial, non-volant mammals worldwide, to test whether (1) prey bottom-up or predator top-down relationships are important drivers of broad-scale species richness gradients once the environment and human influence have been accounted for, (2) predator-prey richness associations vary among biogeographic regions, and (3) body size influences large-scale covariation between predators and prey. SEMs including only productivity, climate, and human factors explained a high proportion of variance in prey richness (R2 = 0.56) but considerably less in predator richness (R2 = 0.13). Adding predator-to-prey or prey-topredator paths strongly increased the explained variance in both cases (prey R2 = 0.79, predator R2 = 0.57), suggesting that predator-prey interactions play an important role in driving global diversity gradients. Prey bottom-up effects prevailed over productivity, climate, and human influence to explain predator richness, whereas productivity and climate were more important than predator top-down effects for explaining prey richness, although predator top-down effects were still significant. Global predator-prey associations were not reproduced in all regions, indicating that distinct paleoclimate and evolutionary histories (Africa and Australia) may alter species interactions across trophic levels. Stronger crosstrophic- level associations were recorded within categories of similar body size (e.g., large prey to large predators) than between them (e.g., large prey to small predators), suggesting that mass-related energetic and physiological constraints influence broad-scale richness links, especially for large-bodied mammals. Overall, our results support the idea that trophic interactions can be important drivers of large-scale species richness gradients in combination with environmental effects. © 2013 by the Ecological Society of America

    Trophic rewilding presents regionally specific opportunities for mitigating climate change

    Get PDF
    Large-bodied mammalian herbivores can influence processes that exacerbate or mitigate climate change. Herbivore impacts are, in turn, influenced by predators that place top-down forcing on prey species within a given body size range. Here, we explore how the functional composition of terrestrial large herbivore and carnivore guilds vary between three mammal distribution scenarios: Present-Natural, Current-Day, and Extant-Native Trophic (ENT) Rewilding. Considering the effects of herbivore species weakly influenced by top-down forcing, we quantify the relative influence keystone large herbivore guilds have on methane emissions, woody vegetation expansion, fire dynamics, large-seed dispersal, and nitrogen and phosphorous transport potential. We find strong regional differences in the number of herbivores under weak top-down regulation between our three scenarios with important implications for how they will influence climate change relevant processes. Under the Present-Natural non-ruminant, megaherbivore, browsers were a particularly important guild across much of the world. Megaherbivore extinction and range contraction and the arrival of livestock means large, ruminant, grazers have become more dominant. ENT Rewilding can restore the Afrotropics and Indo-Malay to the Present-Natural benchmark, but causes top-down forcing of the largest herbivores to become common place elsewhere. ENT Rewilding will reduce methane emissions, but does not maximise Natural Climate Solution potential

    What evidence exists on the impacts of large herbivores on climate change? A systematic map protocol

    Get PDF
    Background- In recent years there has been an increased focus on the role of large herbivores in ecosystem restoration and climate change mitigation. There are multiple processes by which large herbivores could potentially influence climate feedback and forcing effects, but the evidence has not yet been synthesised in a systematic and accessible format. Grazing, browsing, trampling, defecation, and seed dispersal by large herbivores can influence vegetation and soils in ways that may directly or indirectly contribute to climate change or mitigation. For example, changes in vegetation could impact wildfire regimes, carbon storage, and albedo, with ultimate impacts on climate. These processes may be influenced by herbivore species composition, density, and functional traits. The main aim of this systematic map is to synthesise the range of research on climate feedback and forcing effects from large herbivores (≄ 10 kg) in terrestrial ecosystems. We also aim to identify knowledge clusters and gaps in the research base, as well as assessing the potential for quantitative analyses. Methods- A search of peer-reviewed and grey literature will be conducted using a range of bibliographic databases, search engines and websites. The search strategy will involve using a pre-defined search string with Boolean operators. All search results will be screened for relevance according to specific eligibility criteria. Screening will be conducted in two stages: all articles will initially be screened by title and abstract, then those that meet the eligibility criteria will be screened by full text. At both stages, articles will be excluded if they don’t meet all eligibility criteria or if they meet any exclusion criteria. All articles included as eligible after full text screening will be coded. At each stage (of screening and coding) a proportion of articles will be processed independently by two reviewers to assess inter-reviewer reliability and resolve differences. The evidence will be presented in a searchable database with accompanying visual outputs. A narrative synthesis will be provided outlining the range and distribution of evidence, knowledge gaps and clusters, potential bias, and areas for further research

    Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research

    Get PDF
    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human–wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology
    corecore