156 research outputs found

    Chiral recognition mechanism of cellobiohydrolase Cel7A for ligands based on the beta-blocker propranolol: The effect of explicit water molecules on binding and selectivities

    Get PDF
    Proteins are useful chiral selectors. In order to understand the recognition mechanism and chiral discrimination, the binding of the (R)- and (S)-enantiomers of a series of designed amino alcohol inhibitors based on propranolol to cellobiohydrolase Cel7A (Trichoderma reesei) has been studied more closely. X-ray crystal structures were determined of the protein complex with the (R)- and (S)-enantiomers of the strongest binding propranolol analogue. The combination of the structural data, thermodynamic data from capillary electrophoresis and microcalorimetry experiments and computational modelling give a clearer insight into the origin of the enantioselectivity and its opposite thermodynamic signature. The new crystal structures were used in computational molecular flexible dockings of the propranolol analogues using the program Glide. The results indicated that several water molecules in the active site were essential for the docking of the (R)-enantiomers but not for the (S)-enantiomers. The results are discussed in relation to the enantiomeric discrimination of the enzyme. Both dissociation constants (Kd values) and thermodynamical data are included to show the effects of the structural modifications in the ligand on enthalpy and entropy in relation to the enantioselectivity

    The Role of Catalytic Residue p\u3cem\u3eK\u3c/em\u3e\u3csub\u3ea\u3c/sub\u3e on the Hydrolysis/Transglycosylation Partition in Family 3 β-Glucosidases

    Get PDF
    β-Glucosidases (βgls) primarily catalyze the hydrolysis of the terminal glycosidic bond at the non-reducing end of β-glucosides, although glycosidic bond synthesis (called transglycosylation) can also occur in the presence of another acceptor. In the final reaction step, the glucose product or another substrate competes with water for transfer to the glycosyl-enzyme intermediate. The factors governing the balance between the two pathways are not fully known; however, the involvement of ionizable residues in binding and catalysis suggests that their pKa may play a role. Through constant pH molecular dynamics simulations of a glycoside hydrolase Family 3 (GH3) βgl, we showed that the pKa of the catalytic acid/base residue, E441, is low (∼2) during either reaction due to E441–R125–E128 and E441–R125–E166 hydrogen bond networks. The low basicity of E441 would reduce its ability to deprotonate the acceptor. This may be less critical for transglycosylation because sugars have a lower deprotonation enthalpy than water. Moreover, their acidity would be increased by hydrogen bonding with R169 at the acceptor binding site. In contrast, no such interaction was observed for catalytic water. The results are likely applicable to other GH3 βgls because R125, E128, E166, and R169 are conserved. As these enzymes are commonly used in biomass degradation, there is interest in developing variants with enhanced hydrolytic activity. This may be accomplished by elevating the acid/base residue pKa by disrupting its hydrogen bond networks and reducing the affinity and reactivity of a sugar acceptor by mutating R169

    The first crystal structure of a family 45 glycoside hydrolase from a brown-rot fungus, Gloeophyllum trabeum GtCel45A

    Get PDF
    Here we describe the first crystal structure of a beta-1,4-endoglucanase from a brown-rot fungus, Gloeophyllum trabeum GtCel45A, which belongs to subfamily C of glycoside hydrolase family 45 (GH45). GtCel45A is similar to 18 kDa in size and the crystal structure contains 179 amino acids. The structure is refined at 1.30 angstrom resolution and R-free 0.18. The enzyme consists of a single catalytic module folded into a six-stranded double-psi beta-barrel domain surrounded by long loops. GtCel45A is very similar in sequence (82% identity) and structure to PcCel45A from the white-rot fungus Phanerochaete chrysosporium. Surprisingly though, initial hydrolysis of barley beta-glucan was almost twice as fast in GtCel45A as compared to PcCel45A

    High resolution crystal structure of the Endo-N-acetyl-beta-D-glucosaminidase responsible for the deglycosylation of hypocrea jecorina cellulases

    Get PDF
    Endo-N-acetyl-beta-D-glucosaminidases (ENGases) hydrolyze the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. The endo-N-acetyl-beta-D-glucosaminidases classified into glycoside hydrolase family 18 are small, bacterial proteins with different substrate specificities. Recently two eukaryotic family 18 deglycosylating enzymes have been identified. Here, the expression, purification and the 1.3 angstrom resolution structure of the ENGase ( Endo T) from the mesophilic fungus Hypocrea jecorina (anamorph Trichoderma reesei) are reported. Although the mature protein is C-terminally processed with removal of a 46 amino acid peptide, the protein has a complete (beta/alpha) 8 TIM-barrel topology. In the active site, the proton donor (E131) and the residue stabilizing the transition state (D129) in the substrate assisted catalysis mechanism are found in almost identical positions as in the bacterial GH18 ENGases: Endo H, Endo F1, Endo F3, and Endo BT. However, the loops defining the substrate-binding cleft vary greatly from the previously known ENGase structures, and the structures also differ in some of the alpha-helices forming the barrel. This could reflect the variation in substrate specificity between the five enzymes. This is the first three-dimensional structure of a eukaryotic endo-N-acetyl-beta-D-glucosaminidase from glycoside hydrolase family 18. A glycosylation analysis of the cellulases secreted by a Hypocrea jecorina Endo T knock-out strain shows the in vivo function of the protein. A homology search and phylogenetic analysis show that the two known enzymes and their homologues form a large but separate cluster in subgroup B of the fungal chitinases. Therefore the future use of a uniform nomenclature is proposed

    The crystal structure of RsSymEG1 reveals a unique form of smaller GH7 endoglucanases alongside GH7 cellobiohydrolases in protist symbionts of termites

    Get PDF
    Glycoside hydrolase family 7 (GH7) cellulases are key enzymes responsible for carbon cycling on earth through their role in cellulose degradation and constitute highly important industrial enzymes as well. Although these enzymes are found in a wide variety of evolutionarily distant organisms across eukaryotes, they exhibit remarkably conserved features within two groups: exo-acting cellobiohydrolases and endoglucanases. However, recently reports have emerged of a separate clade of GH7 endoglucanases from protist symbionts of termites that are 60-80 amino acids shorter. In this work, we describe the first crystal structure of a short GH7 endoglucanase, RsSymEG1, from a symbiont of the lower termite Reticulitermes speratus. A more open flat surface and shorter loops around the non-reducing end of the cellulose-binding cleft indicate enhanced access to cellulose chains on the surface of cellulose microfibrils. Additionally, when comparing activities on polysaccharides to a typical fungal GH7 endoglucanase (Trichoderma longibrachiatum Cel7B), RsSymEG1 showed significantly faster initial hydrolytic activity. We also examine the prevalence and diversity of GH7 enzymes that the symbionts provide to the termite host, compare overall structures and substrate binding between cellobiohydrolase and long and short endoglucanase, and highlight the presence of similar short GH7s in other organisms

    Greenhouse gas performance of biodiesel production from straw: Soil carbon changes and time-dependent climate impact

    Get PDF
    Background: Use of bio‑based diesel is increasing in Europe. It is currently produced from oilseed crops, but can also be generated from lignocellulosic biomass such as straw. However, removing straw affects soil organic carbon (SOC), with potential consequences for the climate impact of the biofuel. This study assessed the climate impacts and energy balance of biodiesel production from straw using oleaginous yeast, with subsequent biogas production from the residues, with particular emphasis on SOC changes over time. It also explored the impact of four different scenarios for returning the lignin fraction of the biomass to soil to mitigate SOC changes. Climate impact was assessed using two methods, global warming potential (GWP) and a time‑dependent temperature model (∆Ts) that describes changes in mean global surface temperature as a function of time or absolute temperature change potential (AGTP). Results: Straw‑derived biodiesel reduced GWP by 33–80% compared with fossil fuels and primary fossil energy use for biodiesel production was 0.33–0.80 MJprim/MJ, depending on the scenario studied. Simulations using the time‑dependent temperature model showed that a scenario where all straw fractions were converted to energy carriers and no lignin was returned to soil resulted in the highest avoided climate impact. The SOC changes due to straw removal had a large impact on the results, both when using GWP and the time‑dependent temperature model. Conclusions: In a climate perspective, it is preferable to combust straw lignin to produce electricity rather than returning it to the soil if the excess electricity replaces natural gas electricity, according to results from both GWP and time‑dependent temperature modelling. Using different methods to assess climate impact did not change the ranking between the scenarios, but the time‑dependent temperature model provided information about system behaviour over time that can be important for evaluation of biofuel systems, particularly in relation to climate target deadlines

    Oleaginous yeasts respond differently to carbon sources present in lignocellulose hydrolysate

    Get PDF
    Background Microbial oils, generated from lignocellulosic material, have great potential as renewable and sustainable alternatives to fossil-based fuels and chemicals. By unravelling the diversity of lipid accumulation physiology in different oleaginous yeasts grown on the various carbon sources present in lignocellulose hydrolysate (LH), new targets for optimisation of lipid accumulation can be identified. Monitoring lipid formation over time is essential for understanding lipid accumulation physiology. This study investigated lipid accumulation in a variety of oleaginous ascomycetous and basidiomycetous strains grown in glucose and xylose and followed lipid formation kinetics of selected strains in wheat straw hydrolysate (WSH). Results Twenty-nine oleaginous yeast strains were tested for their ability to utilise glucose and xylose, the main sugars present in WSH. Evaluation of sugar consumption and lipid accumulation revealed marked differences in xylose utilisation capacity between the yeast strains, even between those belonging to the same species. Five different promising strains, belonging to the species Lipomyces starkeyi, Rhodotorula glutinis, Rhodotorula babjevae and Rhodotorula toruloides, were grown on undiluted wheat straw hydrolysate and lipid accumulation was followed over time, using Fourier transform-infrared (FTIR) spectroscopy. All five strains were able to grow on undiluted WSH and to accumulate lipids, but to different extents and with different productivities. R. babjevae DVBPG 8058 was the best-performing strain, accumulating 64.8% of cell dry weight (CDW) as lipids. It reached a culture density of 28 g/L CDW in batch cultivation, resulting in a lipid content of 18.1 g/L and yield of 0.24 g lipids per g carbon source. This strain formed lipids from the major carbon sources in hydrolysate, glucose, acetate and xylose. R. glutinis CBS 2367 also consumed these carbon sources, but when assimilating xylose it consumed intracellular lipids simultaneously. Rhodotorula strains contained a higher proportion of polyunsaturated fatty acids than the two tested Lipomyces starkeyi strains. Conclusions There is considerable metabolic diversity among oleaginous yeasts, even between closely related species and strains, especially when converting xylose to biomass and lipids. Monitoring the kinetics of lipid accumulation and identifying the molecular basis of this diversity are keys to selecting suitable strains for high lipid production from lignocellulose

    Energy performance of compressed biomethane gas production from co-digestion of Salix and dairy manure: factoring differences between Salix varieties

    Get PDF
    Biogas from anaerobic digestion is a versatile energy carrier that can be upgraded to compressed biomethane gas (CBG) as a renewable and sustainable alternative to natural gas. Organic residues and energy crops are predicted to be major sources of bioenergy production in the future. Pre-treatment can reduce the recalcitrance of lignocellulosic energy crops such as Salix to anaerobic digestion, making it a potential biogas feedstock. This lignocellulosic material can be co-digested with animal manure, which has the complementary effect of increasing volumetric biogas yield. Salix varieties exhibit variations in yield, composition and biomethane potential values, which can have a significant effect on the overall biogas production system. This study assessed the impact of Salix varietal differences on the overall mass and energy balance of a co-digestion system using steam pre-treated Salix biomass and dairy manure (DaM) to produce CBG as the final product. Six commercial Salix varieties cultivated under unfertilised and fertilised conditions were compared. Energy and mass flows along this total process chain, comprising Salix cultivation, steam pre-treatment, biogas production and biogas upgrading to CBG, were evaluated. Two scenarios were considered: a base scenario without heat recovery and a scenario with heat recovery. The results showed that Salix variety had a significant effect on energy output-input ratio (R), with R values in the base scenario of 1.57-1.88 and in the heat recovery scenario of 2.36-2.94. In both scenarios, unfertilised var. Tordis was the best energy performer, while the fertilised var. Jorr was the worst. Based on this energy performance, Salix could be a feasible feedstock for co-digestion with DaM, although its R value was at the lower end of the range reported previously for energy crops

    Comparison of glycoside hydrolase family 3 β-xylosidases from basidiomycetes and ascomycetes reveals evolutionarily distinct xylan degradation systems

    Get PDF
    Xylan is the most common hemicellulose in plant cell walls, though the structure of xylan polymers differs between plant species. Here, to gain a better understanding of fungal xylan degradation systems, which can enhance enzymatic saccharification of plant cell walls in industrial processes, we conducted a comparative study of two glycoside hydrolase family 3 (GH3) β-xylosidases (Bxls), one from the basidiomycete Phanerochaete chrysosporium (PcBxl3), and the other from the ascomycete Trichoderma reesei (TrXyl3A). A comparison of the crystal structures of the two enzymes, both with saccharide bound at the catalytic center, provided insight into the basis of substrate binding at each subsite. PcBxl3 has a substrate-binding pocket at subsite -1, while TrXyl3A has an extra loop that contains additional binding subsites. Furthermore, kinetic experiments revealed that PcBxl3 degraded xylooligosaccharides faster than TrXyl3A, while the KM values of TrXyl3A were lower than those of PcBxl3. The relationship between substrate specificity and degree of polymerization of substrates suggested that PcBxl3 preferentially degrades xylobiose (X2), while TrXyl3A degrades longer xylooligosaccharides. Moreover, docking simulation supported the existence of extended positive subsites of TrXyl3A in the extra loop located at the N-terminus of the protein. Finally, phylogenetic analysis suggests that wood-decaying basidiomycetes use Bxls such as PcBxl3 that act efficiently on xylan structures from woody plants, whereas molds use instead Bxls that efficiently degrade xylan from grass. Our results provide added insights into fungal efficient xylan degradation systems

    Montana Kaimin, January 30, 2008

    Get PDF
    Student newspaper of the University of Montana, Missoula.https://scholarworks.umt.edu/studentnewspaper/6138/thumbnail.jp
    • …
    corecore