6,858 research outputs found

    The Birmingham-CfA cluster scaling project - II. Mass composition and distribution

    Full text link
    We investigate the spatial distribution of the baryonic and non-baryonic mass components in a sample of 66 virialized systems. We have used X-ray measurements to determine the deprojected temperature and density structure of the intergalactic medium and have employed these to map the underlying gravitational potential. In addition, we have measured the deprojected spatial distribution of galaxy luminosity for a subset of this sample, spanning over 2 decades in mass. With this combined X-ray/optical study we examine the scaling properties of the baryons and address the issue of mass-to-light (M/L) ratio in groups and clusters of galaxies. We measure a median mass-to-light ratio of 224 h70 M/L (solar) in the rest frame B_j band, in good agreement with other measurements based on X-ray determined masses. There is no trend in M/L with X-ray temperature and no significant trend for mass to increase faster than luminosity: M \propto \L_{B,j}^{1.08 +/- 0.12}. This implied lack of significant variation in star formation efficiency suggests that gas cooling cannot be greatly enhanced in groups, unless it drops out to form baryonic dark matter. Correspondingly, our results indicate that non-gravitational heating must have played a significant role in establishing the observed departure from self-similarity in low mass systems. The median baryon fraction for our sample is 0.162 h70^{-3/2}, which allows us to place an upper limit on the cosmological matter density, Omega_m <= 0.27 h70^{-1}, in good agreement with the latest results from WMAP. We find evidence of a systematic trend towards higher central density concentration in the coolest haloes, indicative of an early formation epoch and consistent with hierarchical formation models.Comment: 14 pages, 11 figures; published in MNRAS. Corrected mistake in photometric conversion (equation 2): Bj luminosities increased for A2218, N2563 & N5846. Conclusions unchange

    The Birmingham-CfA cluster scaling project - III: entropy and similarity in galaxy systems

    Full text link
    We examine profiles and scaling properties of the entropy of the intergalactic gas in a sample of 66 virialized systems, ranging in mass from single elliptical galaxies to rich clusters, for which we have resolved X-ray temperature profiles. Some of the properties we derive appear to be inconsistent with any of the models put forward to explain the breaking of self-similarity in the baryon content of clusters. In particular, the entropy profiles, scaled to the virial radius, are broadly similar in form across the sample, apart from a normalization factor which differs from the simple self-similar scaling with temperature. Low mass systems do not show the large isentropic cores predicted by preheating models, and the high entropy excesses reported at large radii in groups by Finoguenov et al (2002) are confirmed, and found to extend even to moderately rich clusters. We discuss the implications of these results for the evolutionary history of the hot gas in clusters, and suggest that preheating may affect the entropy of intracluster gas primarily by reducing the density of material accreting into groups and clusters along cosmic filaments.Comment: 13 pages, 8 figures - accepted for publication in MNRA

    Hydrodynamic simulations of correlation and scatter in galaxy cluster maps

    Full text link
    The two dimensional structure of hot gas in galaxy clusters contains information about the hydrodynamical state of the cluster, which can be used to understand the origin of scatter in the thermodynamical properties of the gas, and to improve the use of clusters to probe cosmology. Using a set of hydrodynamical simulations, we provide a comparison between various maps currently employed in the X-ray analysis of merging clusters and those cluster maps anticipated from forthcoming observations of the thermal Sunyaev-Zel'dovich effect. We show the following: 1) an X-ray pseudo-pressure, defined as square root of the soft band X-ray image times the temperature map is a good proxy for the SZ map; 2) we find that clumpiness is the main reason for deviation between X-ray pseudo-pressure and SZ maps; 3) the level of clumpiness can be well characterized by X-ray pseudo-entropy maps. 4) We describe the frequency of deviation in various maps of clusters as a function of the amplitude of the deviation. This enables both a comparison to observations and a comparison to effects of introduction of complex physical processes into simulation.Comment: 7 pages, A&A in pres

    Histidine nutrition and genotype affect cataract development in Atlantic salmon, Salmo salar L.

    Get PDF
    The aim of this study was to investigate effects of dietary levels of histidine (His) and iron (Fe) on cataract development in two strains of Atlantic salmon monitored through parr-smolt transformation. Three experimental diets were fed: (i) a control diet (CD) with 110 mg kg-1 Fe and 11.7 g kg-1 His; (ii) CD supplemented with crystalline His to a level of 18 g kg-1 (HD); and (iii) HD with added iron up to 220 mg kg-1 (HID). A cross-over design, with two feeding periods was used. A 6-week freshwater (FW) period was followed by a 20-week period, of which the first three were in FW and the following 17 weeks in sea water (SW). Fish were sampled for weighing, cataract assessment and tissue analysis at five time points. Cataracts developed in all groups in SW, but scores were lower in those fed high His diets (P < 0.05). This effect was most pronounced when HD or HID was given in SW, but was also observed when these diets were given in FW only. Histidine supplementation had a positive effect on growth performance and feed conversion ratio (P < 0.05), whereas this did not occur when iron was added. Groups fed HD or HID had higher lens levels of His and N-acetyl histidine (NAH), the latter showing a marked increase post-smoltification (P < 0.05). The HD or HID groups also showed higher muscle concentrations of the His dipeptide anserine (P < 0.05). There was a strong genetic influence on cataract development in the CD groups (P < 0.001), not associated with tissue levels of His or NAH. The role of His and His-related compounds in cataractogenesis is discussed in relation to tissue buffering, osmoregulation and antioxidation

    Missing Thermal Energy of the Intracluster Medium

    Full text link
    The Sunyaev-Zel'dovich (SZ) effect is a direct probe of thermal energy content of the Universe, induced in the cosmic microwave background (CMB) sky through scattering of CMB photons off hot electrons in the intracluster medium (ICM). We report a 9-sigma detection of the SZ signal in the CMB maps of Wilkinson Microwave Anisotropy Probe (WMAP) 3yr data, through study of a sample of 193 massive galaxy clusters with observed X-ray temperatures greater than 3 keV. For the first time, we make a model-independent measurement of the pressure profile in the outskirts of the ICM, and show that it closely follows the profiles obtained by X-ray observations and numerical simulations. We find that our measurements of the SZ effect would account for only half of the thermal energy of the cluster, if all the cluster baryons were in the hot ICM phase. Our measurements indicate that a significant fraction (35 +/- 8 %) of baryonic mass is missing from the hot ICM, and thus must have cooled to form galaxies, intracluster stars, or an unknown cold phase of the ICM. There does not seem to be enough mass in the form of stars or cold gas in the cluster galaxies or intracluster space, signaling the need for a yet-unknown baryonic component (at 3-sigma level), or otherwise new astrophysical processes in the ICM.Comment: 9 pages, 4 figures, references added, a mismatch between X-ray and SZ properties of simulated clusters is corrected, marginally increasing the significance of missing baryon fraction, Accepted for publication in MNRA

    The Birmingham-CfA cluster scaling project - I: gas fraction and the M-T relation

    Get PDF
    We have assembled a large sample of virialized systems, comprising 66 galaxy clusters, groups and elliptical galaxies with high quality X-ray data. To each system we have fitted analytical profiles describing the gas density and temperature variation with radius, corrected for the effects of central gas cooling. We present an analysis of the scaling properties of these systems and focus in this paper on the gas distribution and M-T relation. In addition to clusters and groups, our sample includes two early-type galaxies, carefully selected to avoid contamination from group or cluster X-ray emission. We compare the properties of these objects with those of more massive systems and find evidence for a systematic difference between galaxy-sized haloes and groups of a similar temperature. We derive a mean logarithmic slope of the M-T relation within R_200 of 1.84+/-0.06, although there is some evidence of a gradual steepening in the M-T relation, with decreasing mass. We recover a similar slope using two additional methods of calculating the mean temperature. Repeating the analysis with the assumption of isothermality, we find the slope changes only slightly, to 1.89+/-0.04, but the normalization is increased by 30%. Correspondingly, the mean gas fraction within R_200 changes from (0.13+/-0.01)h70^-1.5 to (0.11+/-0.01)h70^-1.5, for the isothermal case, with the smaller fractional change reflecting different behaviour between hot and cool systems. There is a strong correlation between the gas fraction within 0.3*R_200 and temperature. This reflects the strong (5.8 sigma) trend between the gas density slope parameter, beta, and temperature, which has been found in previous work. (abridged)Comment: 27 pages, accepted for publication in MNRAS; uses longtable.sty & lscape.st

    Low energy proton bidirectional anisotropies and their relation to transient interplanetary magnetic structures: ISEE-3 observations

    Get PDF
    It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented

    Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model

    Get PDF
    The impact of convection on tropospheric O<sub>3</sub> and its precursors has been examined in a coupled chemistry-climate model. There are two ways that convection affects O<sub>3</sub>. First, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> itself. Convection lifts lower tropospheric air to regions where the O<sub>3</sub> lifetime is longer, whilst mass-balance subsidence mixes O<sub>3</sub>-rich upper tropospheric (UT) air downwards to regions where the O<sub>3</sub> lifetime is shorter. This tends to decrease UT O<sub>3</sub> and the overall tropospheric column of O<sub>3</sub>. Secondly, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> precursors. This affects O<sub>3</sub> chemical production and destruction. Convection transports isoprene and its degradation products to the UT where they interact with lightning NO<sub>x</sub> to produce PAN, at the expense of NO<sub>x</sub>. In our model, we find that convection reduces UT NO<sub>x</sub> through this mechanism; convective down-mixing also flattens our imposed profile of lightning emissions, further reducing UT NO<sub>x</sub>. Over tropical land, which has large lightning NO<sub>x</sub> emissions in the UT, we find convective lofting of NO<sub>x</sub> from surface sources appears relatively unimportant. Despite UT NO<sub>x</sub> decreases, UT O<sub>3</sub> production increases as a result of UT HO<sub>x</sub> increases driven by isoprene oxidation chemistry. However, UT O<sub>3</sub> tends to decrease, as the effect of convective overturning of O<sub>3</sub> itself dominates over changes in O<sub>3</sub> chemistry. Convective transport also reduces UT O<sub>3</sub> in the mid-latitudes resulting in a 13% decrease in the global tropospheric O<sub>3</sub> burden. These results contrast with an earlier study that uses a model of similar chemical complexity. Differences in convection schemes as well as chemistry schemes &ndash; in particular isoprene-driven changes are the most likely causes of such discrepancies. Further modelling studies are needed to constrain this uncertainty range
    corecore