189 research outputs found

    Genetic Dissection of the Drosophila melanogaster Female Head Transcriptome Reveals Widespread Allelic Heterogeneity

    Get PDF
    Modern genetic mapping is plagued by the “missing heritability” problem, which refers to the discordance between the estimated heritabilities of quantitative traits and the variance accounted for by mapped causative variants. One major potential explanation for the missing heritability is allelic heterogeneity, in which there are multiple causative variants at each causative gene with only a fraction having been identified. The majority of genome-wide association studies (GWAS) implicitly assume that a single SNP can explain all the variance for a causative locus. However, if allelic heterogeneity is prevalent, a substantial amount of genetic variance will remain unexplained. In this paper, we take a haplotype-based mapping approach and quantify the number of alleles segregating at each locus using a large set of 7922 eQTL contributing to regulatory variation in the Drosophila melanogaster female head. Not only does this study provide a comprehensive eQTL map for a major community genetic resource, the Drosophila Synthetic Population Resource, but it also provides a direct test of the allelic heterogeneity hypothesis. We find that 95% of cis-eQTLs and 78% of trans-eQTLs are due to multiple alleles, demonstrating that allelic heterogeneity is widespread in Drosophila eQTL. Allelic heterogeneity likely contributes significantly to the missing heritability problem common in GWAS studies.This work was supported by NIH R01 RR024862/OD010974 to SJM and ADL, an American Recovery and Reinvestment Act (ARRA) administrative supplement to this award, and F32 GM099382 to EGK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The Dawn of Open Access to Phylogenetic Data

    Get PDF
    The scientific enterprise depends critically on the preservation of and open access to published data. This basic tenet applies acutely to phylogenies (estimates of evolutionary relationships among species). Increasingly, phylogenies are estimated from increasingly large, genome-scale datasets using increasingly complex statistical methods that require increasing levels of expertise and computational investment. Moreover, the resulting phylogenetic data provide an explicit historical perspective that critically informs research in a vast and growing number of scientific disciplines. One such use is the study of changes in rates of lineage diversification (speciation - extinction) through time. As part of a meta-analysis in this area, we sought to collect phylogenetic data (comprising nucleotide sequence alignment and tree files) from 217 studies published in 46 journals over a 13-year period. We document our attempts to procure those data (from online archives and by direct request to corresponding authors), and report results of analyses (using Bayesian logistic regression) to assess the impact of various factors on the success of our efforts. Overall, complete phylogenetic data for ~60% of these studies are effectively lost to science. Our study indicates that phylogenetic data are more likely to be deposited in online archives and/or shared upon request when: (1) the publishing journal has a strong data-sharing policy; (2) the publishing journal has a higher impact factor, and; (3) the data are requested from faculty rather than students. Although the situation appears dire, our analyses suggest that it is far from hopeless: recent initiatives by the scientific community -- including policy changes by journals and funding agencies -- are improving the state of affairs

    Salmonella Phage ST64B Encodes a Member of the SseK/NleB Effector Family

    Get PDF
    Salmonella enterica is a species of bacteria that is a major cause of enteritis across the globe, while certain serovars cause typhoid, a more serious disease associated with a significant mortality rate. Type III secreted effectors are major contributors to the pathogenesis of Salmonella infections. Genes encoding effectors are acquired via horizontal gene transfer, and a subset are encoded within active phage lysogens. Because the acquisition of effectors is in flux, the complement of effectors possessed by various Salmonella strains frequently differs. By comparing the genome sequences of S. enterica serovar Typhimurium strain SL1344 with LT2, we identified a gene with significant similarity to SseK/NleB type III secreted effector proteins within a phage ST64B lysogen that is absent from LT2. We have named this gene sseK3. SseK3 was co-regulated with the SPI-2 type III secretion system in vitro and inside host cells, and was also injected into infected host cells. While no role for SseK3 in virulence could be identified, a role for the other family members in murine typhoid was found. SseK3 and other phage-encoded effectors were found to have a significant but sparse distribution in the available Salmonella genome sequences, indicating the potential for more uncharacterised effectors to be present in less studied serovars. These phage-encoded effectors may be principle subjects of contemporary selective processes shaping Salmonella-host interactions

    Surface Sampling Methods for Bacillus anthracis Spore Contamination

    Get PDF
    During an investigation conducted December 17–20, 2001, we collected environmental samples from a U.S. postal facility in Washington, D.C., known to be extensively contaminated with Bacillus anthracis spores. Because methods for collecting and analyzing B. anthracis spores have not yet been validated, our objective was to compare the relative effectiveness of sampling methods used for collecting spores from contaminated surfaces. Comparison of wipe, wet and dry swab, and HEPA vacuum sock samples on nonporous surfaces indicated good agreement between results with HEPA vacuum and wipe samples. However, results from HEPA vacuum sock and wipe samples agreed poorly with the swab samples. Dry swabs failed to detect spores >75% of the time they were detected by wipe and HEPA vacuum samples. Wipe samples collected after HEPA vacuum samples and HEPA vacuum samples after wipe samples indicated that neither method completely removed spores from the sampled surfaces

    The spectral dimension of longwave feedback in the CMIP3 and CMIP5 experiments

    Full text link
    Radiative feedback is normally discussed in terms of the change of broadband flux. Yet it has an intrinsic dimension of spectrum. A set of longwave (LW) spectral radiative kernels (SRKs) is constructed and validated in a similar way as the broadband radiative kernel. The LW broadband feedback derived using this SRK are consistent with those from the broadband radiative kernels. As an application, the SRK is applied to 12 general circulation models (GCMs) from the Coupled Model Intercomparison Project Phase 3 and 12 GCMs from the Coupled Model Intercomparison Project Phase 5 simulations to derive the spectrally resolved Planck, lapse rate, and LW water vapor feedback. The spectral details of the Planck feedback from different GCMs are essentially the same, but the lapse rate and LW water vapor feedback do reveal spectrally dependent difference among GCMs. Spatial distributions of the feedback at different spectral regions are also discussed. The spectral feedback analysis provides us another dimension to understand and evaluate the modeled radiative feedback. Key Points Spectral radiative kernel is developed and validated to get spectral feedback Lapse rate and water vapor feedback have different spectral dependence Spectral kernel provides new information not available from broadband studiesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110043/1/grl52334.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/110043/2/grl52334-sup-0001-readme.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/110043/3/grl52334-sup-0002-Auxiliary_material.pd

    Developing a sustainability science approach for water systems

    Get PDF
    We convened a workshop to enable scientists who study water systems from both social science and physical science perspectives to develop a shared language. This shared language is necessary to bridge a divide between these disciplines’ different conceptual frameworks. As a result of this workshop, we argue that we should view socio-hydrological systems as structurally co-constituted of social, engineered, and natural elements and study the “characteristic management challenges” that emerge from this structure and reoccur across time, space, and socioeconomic contexts. This approach is in contrast to theories that view these systems as separately conceptualized natural and social domains connected by bi-directional feedbacks, as is prevalent in much of the water systems research arising from the physical sciences. A focus on emergent characteristic management challenges encourages us to go beyond searching for evidence of feedbacks and instead ask questions such as: What types of innovations have successfully been used to address these challenges? What structural components of the system affect its resilience to hydrological events and through what mechanisms? Are there differences between successful and unsuccessful strategies to solve one of the characteristic management challenges? If so, how are these differences affected by institutional structure and ecological and economic contexts? To answer these questions, social processes must now take center stage in the study and practice of water management. We also argue that water systems are an important class of coupled systems with relevance for sustainability science because they are particularly amenable to the kinds of systematic comparisons that allow knowledge to accumulate. Indeed, the characteristic management challenges we identify are few in number and recur over most of human history and in most geographical locations. This recurrence should allow us to accumulate knowledge to answer the above questions by studying the long historical record of institutional innovations to manage water systems

    Statistical design of personalized medicine interventions: The Clarification of Optimal Anticoagulation through Genetics (COAG) trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is currently much interest in pharmacogenetics: determining variation in genes that regulate drug effects, with a particular emphasis on improving drug safety and efficacy. The ability to determine such variation motivates the application of personalized drug therapies that utilize a patient's genetic makeup to determine a safe and effective drug at the correct dose. To ascertain whether a genotype-guided drug therapy improves patient care, a personalized medicine intervention may be evaluated within the framework of a randomized controlled trial. The statistical design of this type of personalized medicine intervention requires special considerations: the distribution of relevant allelic variants in the study population; and whether the pharmacogenetic intervention is equally effective across subpopulations defined by allelic variants.</p> <p>Methods</p> <p>The statistical design of the Clarification of Optimal Anticoagulation through Genetics (COAG) trial serves as an illustrative example of a personalized medicine intervention that uses each subject's genotype information. The COAG trial is a multicenter, double blind, randomized clinical trial that will compare two approaches to initiation of warfarin therapy: genotype-guided dosing, the initiation of warfarin therapy based on algorithms using clinical information and genotypes for polymorphisms in <it>CYP2C9 </it>and <it>VKORC1</it>; and clinical-guided dosing, the initiation of warfarin therapy based on algorithms using only clinical information.</p> <p>Results</p> <p>We determine an absolute minimum detectable difference of 5.49% based on an assumed 60% population prevalence of zero or multiple genetic variants in either <it>CYP2C9 </it>or <it>VKORC1 </it>and an assumed 15% relative effectiveness of genotype-guided warfarin initiation for those with zero or multiple genetic variants. Thus we calculate a sample size of 1238 to achieve a power level of 80% for the primary outcome. We show that reasonable departures from these assumptions may decrease statistical power to 65%.</p> <p>Conclusions</p> <p>In a personalized medicine intervention, the minimum detectable difference used in sample size calculations is not a known quantity, but rather an unknown quantity that depends on the genetic makeup of the subjects enrolled. Given the possible sensitivity of sample size and power calculations to these key assumptions, we recommend that they be monitored during the conduct of a personalized medicine intervention.</p> <p>Trial Registration</p> <p>clinicaltrials.gov: NCT00839657</p

    Insights into the Ecology and Evolutionary Success of Crocodilians Revealed through Bite-Force and Tooth-Pressure Experimentation

    Get PDF
    BackgroundCrocodilians have dominated predatory niches at the water-land interface for over 85 million years. Like their ancestors, living species show substantial variation in their jaw proportions, dental form and body size. These differences are often assumed to reflect anatomical specialization related to feeding and niche occupation, but quantified data are scant. How these factors relate to biomechanical performance during feeding and their relevance to crocodilian evolutionary success are not known.Methodology/Principal FindingsWe measured adult bite forces and tooth pressures in all 23 extant crocodilian species and analyzed the results in ecological and phylogenetic contexts. We demonstrate that these reptiles generate the highest bite forces and tooth pressures known for any living animals. Bite forces strongly correlate with body size, and size changes are a major mechanism of feeding evolution in this group. Jaw shape demonstrates surprisingly little correlation to bite force and pressures. Bite forces can now be predicted in fossil crocodilians using the regression equations generated in this research.Conclusions/SignificanceCritical to crocodilian long-term success was the evolution of a high bite-force generating musculo-skeletal architecture. Once achieved, the relative force capacities of this system went essentially unmodified throughout subsequent diversification. Rampant changes in body size and concurrent changes in bite force served as a mechanism to allow access to differing prey types and sizes. Further access to the diversity of near-shore prey was gained primarily through changes in tooth pressure via the evolution of dental form and distributions of the teeth within the jaws. Rostral proportions changed substantially throughout crocodilian evolution, but not in correspondence with bite forces. The biomechanical and ecological ramifications of such changes need further examination
    corecore