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Abstract

Modern genetic mapping is plagued by the ‘‘missing heritability’’ problem, which refers to the discordance between the
estimated heritabilities of quantitative traits and the variance accounted for by mapped causative variants. One major
potential explanation for the missing heritability is allelic heterogeneity, in which there are multiple causative variants at
each causative gene with only a fraction having been identified. The majority of genome-wide association studies (GWAS)
implicitly assume that a single SNP can explain all the variance for a causative locus. However, if allelic heterogeneity is
prevalent, a substantial amount of genetic variance will remain unexplained. In this paper, we take a haplotype-based
mapping approach and quantify the number of alleles segregating at each locus using a large set of 7922 eQTL contributing
to regulatory variation in the Drosophila melanogaster female head. Not only does this study provide a comprehensive eQTL
map for a major community genetic resource, the Drosophila Synthetic Population Resource, but it also provides a direct
test of the allelic heterogeneity hypothesis. We find that 95% of cis-eQTLs and 78% of trans-eQTLs are due to multiple
alleles, demonstrating that allelic heterogeneity is widespread in Drosophila eQTL. Allelic heterogeneity likely contributes
significantly to the missing heritability problem common in GWAS studies.
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Introduction

Uncovering the genetic basis of quantitative phenotypes is a

central, yet unresolved problem in biology. There is a major

discrepancy between the heritability estimates of most quan-

titative traits and the amount of heritable variation accounted

for by all variants localized to a causative site. This

phenomenon is often referred to as the ‘‘missing heritability’’

problem. Several hypotheses have been offered as possible

explanations, including widespread epistasis [1], the infinites-

imal model (many, very small effect loci influencing the

phenotype of interest that are difficult to detect statistically)

[2–4], rare alleles of large effect, that are also statistically

difficult to detect [5–7], and widespread allelic heterogeneity

(many independent effects segregating at each causative locus)

[7]. This quest to understand the genetic basis of complex

traits has given rise to a community-based strategy of creating

freely-available genetic resource populations in model organ-

isms such as mice [8–10], Arabidopsis thaliana [11,12], maize

[13–16], and Drosophila melanogaster [17–20]. Those organisms

with the greatest genetic resources and with a community of

researchers focused on a single system provide a logical starting

point toward finding the missing heritability associated with

quantitative phenotypes. In addition, the experimental designs

of some of these resources are well suited to test different

hypotheses for the sources of missing heritability. For example,

Bloom et al. [21] used a large segregant pool from a two line

yeast cross to demonstrate that epistasis is not a major

contributor to the heritability of most traits. In particular,

resources that have a well-defined multi-haplotype structure

can be used to identify the extent of allelic heterogeneity [22]

owing to the ability to estimate trait means for each haplotype

at each mapped QTL. By focusing effort on these community

resources, the hope is that we will gain a better understanding

of the causes of missing heritability problem.

Much of the genetic variation underlying whole organism

phenotypes is thought to be due to regulatory variation, i.e.,

variants influencing gene expression [23–26]. Causative loci

are linked to whole organism phenotypes through the

transcriptome, an interrelated network of transcripts whose

abundances influence the resulting phenotype. The transcript

abundances of most genes are quantitative traits themselves

and have heritabilities comparable to typical whole-organism

phenotypes [24,26,27]. Increasingly, expression quantitative

trait locus (eQTL) mapping is being used to identify the source

of genetic variation in transcript abundances with the ultimate
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goal of linking variation at the nucleotide level to variation in

gene expression and to variation in visible phenotypes.

Expression QTL studies have shown that most genes have

local (cis) eQTL that tend to be located near the transcription

start site and to be of fairly large effect. Distant regulatory

effects (trans-eQTL) are more difficult to identify, likely because

they are more numerous and are of smaller average effect,

leaving a great deal of variation in transcript abundance

unexplained [23,24,26,27]. There is a growing movement

toward identifying the causative quantitative trait nucleotides

(QTN) underlying cis-eQTL, often with the assumption there is

a single causative site [28–30]. However, if most eQTL harbor

allelic heterogeneity [31], identifying a single causative variant

will cause researchers to miss a significant portion of the

genetic variation [7].

Here we describe transcriptome-wide mapping in female head

tissue in the Drosophila Synthetic Population Resource (DSPR)

[17,18], one of the major genetic reference panels in the Drosophila

model system. Our goals are two-fold. First, we aim to provide a

comprehensive map of cis- and trans-eQTL for female head tissue

in the DSPR. A key advantage of genetic reference panels is the

potential to integrate phenotypes measured at multiple levels on

genetically identical individuals. Incorporating eQTL data with

visible phenotype data can increase mapping power and help users

identify candidate genes [9,23,25,32]. Second, we use the large set

of discovered eQTL to quantify the number of alleles segregating

at each causative locus, providing an evaluation of the degree of

allelic heterogeneity at both cis- and trans-eQTL. The hypothesis

that allelic heterogeneity is prevalent in quantitative traits has not

been tested directly, in part because it is difficult to do so using a

genome-wide association (GWAS) framework. Within loci, linkage

disequilibrium makes it very difficult to distinguish between two

SNPs tagging two independent causative sites versus a single

causative site. In addition, the step-wise regression approaches

used, for example [2,33], to identify multiple SNPs in a gene

region associated with a phenotype lack power. The result is that

the majority of GWAS that have identified multiple SNPs at a

single locus using conditional analysis rarely identify more than

two such SNPs despite very large sample sizes e.g. [2] but see [33].

In contrast, mapping in the DSPR and other multi-parental

advanced generation intercross mapping panels take a haplotype

based approach, providing a natural way to distinguish between

multiple alleles at each QTL and a way to ascertain the potential

contribution of allelic heterogeneity to the missing heritability

problem.

Results and Discussion

We mapped genome-wide expression variation using trans-

heterozygote F1 individuals from 596 crosses between DSPR

population A (pA) females and population B (pB) males, thus

avoiding mapping variation for inbreeding depression. Gene

expression was assayed using Nimblegen 126135 K arrays, and

we analyzed the resulting data using a custom data analysis

pipeline (see methods) to identify all significant eQTL.

The female head eQTL map
We identified a total of 7922 eQTLs corresponding to 7850

transcripts out of a total of 11064 transcripts tested (Figure 1).

Details for all eQTLs are in Table S1. Of these, 7704

transcripts were associated with a single cis-eQTL, 71 were

associated with both cis- and trans-eQTL, and 75 were

associated with only trans-eQTL. A small percentage of eQTLs

(,7%; Table 1) were associated with only a single recombinant

inbred line (RIL) population (pA or pB; see methods), but for

most eQTL fitting both pA and pB was necessary to explain

the eQTL signal, indicating that causative variants were

present in both populations.

The amount of variation explained by our mapped eQTLs

was high (Figure 2), though our stringent, experiment-wise

permutation-based correction for multiple tests severely limits

our ability to detect QTL of small effect. Not surprisingly, the

variance explained by cis-eQTLs was higher than trans-eQTLs

[24]. Our cis-eQTLs explained a median of 24% of the

phenotypic variance, and 855 eQTL explained more than 50%

of the phenotypic variance. Using our heritability estimates for

each transcript abundance, we estimated the percentage of the

heritability each eQTL explained. The median for the percent

heritability explained by each eQTL was 73%. Our trans-

eQTLs explained lower levels of variance, the median

phenotypic variance explained was 15%, and the median

percent heritability explained was 38%. However, if heritabil-

ity values are underestimated, and/or we overestimate the

effects of eQTLs (which is likely due to the Beavis effect [34]),

these values will be inflated. This effect is obvious for the set of

eQTL estimated to explain greater than 100% of the

heritability (Figure 2A).

Our mapping resolution was high (Figure 3). We used two

methods for estimating confidence intervals, a 3 LOD drop and

the Bayesian credible interval. We excluded confidence intervals

that spanned centromeres or occurred near telomeres, because

these tend to cover very large physical distances (7% of eQTLs).

The Bayesian credible intervals tended to be narrower than 3

LOD drops (median BCI = 110 kb, 0.25 cM; median 3 LOD

drop = 240 kb, 0.51 cM), but the range was larger for BCIs (BCI:

0–4.5 Mb, 0–6.5 cM; 3 LOD drop: 20 kb–4.0 Mb, 0.001–

3.9 cM). The median number of genes within cis-eQTL CIs was

32 (range 1–551), and within trans-eQTL CIs, the median was 44

(range: 5–479).

We have provided a comprehensive map of eQTLs for

female head tissue in the Drosophila model system within the

constraints of our statistical power. There is little doubt many

smaller effect eQTLs exist that we were not able to identify

given our conservative statistical threshold. Our use of trans-

heterozygote individuals means that we not only avoid the

effects of inbreeding depression, but we have also obtained

estimates for all eQTL for both pA and pB DSPR populations.

Author Summary

For traits with complex genetic inheritance it has generally
proven very difficult to identify the majority of the specific
causative variants involved. A range of hypotheses have
been put forward to explain this so-called ‘‘missing
heritability’’. One idea—allelic heterogeneity, where genes
each harbor multiple different causative variants—has
received little attention, because it is difficult to detect
with most genetic mapping designs. Here we make use of
a panel of Drosophila melanogaster lines derived from
multiple founders, allowing us to directly test for the
presence of multiple alleles at a large set of genetic loci
influencing gene expression. We find that the vast majority
of loci harbor more than two functional alleles, demon-
strating extensive allelic heterogeneity at the level of gene
expression and suggesting that such heterogeneity is an
important factor determining the genetic basis of complex
trait variation in general.

eQTLs Are Multiallelic in Drosophila
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Overall, our results confirm what many other researchers have

observed, widespread large effect cis-eQTLs and smaller effect

trans-eQTLs [23,24,26,27]. One of the major advantages of a

stable genetic panel is the ability to measure multiple traits at

multiple levels on genetically identical individuals, which

allows for the potential to combine these sources of data to

identify causative genes [9,23,25,32]. We expect this dataset to

be very useful to DSPR users, particularly those interrogating

phenotypes measured in females with relevance to neuroanat-

omy or behavior. All of the raw and analyzed data are freely

available at http://FlyRILs.org/Data. The data have also

been deposited in NCBI’s Gene Expression Omnibus [35] and

are accessible through GEO Series accession number

GSE52076.

Trans-eQTL hotspots
We identified regions of the genome associated with a high trans-

eQTL density to identify eQTL regulating the expression of

several other genes (trans hotspots). There were two regions of high

trans-eQTL density, TQTLA and TQTLB (Figure 4; Table 2).

These clusters regulate several genes distributed throughout the

genome, as is apparent in Figure 1. We used a gene ontology term

finder [36] to determine whether the sets of genes regulated by

these trans-eQTL were related to a common process. The set of 16

genes regulated by TQTLA showed enrichment for circadian

rhythm of gene expression (2 of the 16 genes regulated by

TQTLA; P = 0.0007). We used principal components analysis on

the set of 16 genes to create a composite variable. All 16 genes load

fairly evenly on the first principal component (absolute value

range: 0.08–0.20). We then correlated this composite variable with

expression measures for each gene in the TQTLA region to

identify possible candidate genes. The gene timeless (tim) was highly

correlated with the TQTLA composite variable (r = 0.90), and it

does have a significant cis-eQTL. All other genes in the interval

had a correlation with an absolute value of less than 0.5.

Additionally, after correlating the expression of each of the 16

transcripts regulated by TQTLA with the expression of all genes in

the TQTLA region, timeless showed the maximum pairwise

correlation in all 16 cases (absolute value of correlation

Figure 1. The locations of all mapped eQTL. The location of the transcripts whose expression measures are mapped are along the x axis and the
location of the corresponding eQTL peaks are along the y axis. Points falling along the diagonal indicate eQTL mapping to the same location as
transcripts (cis) while those off the diagonal map to different locations (trans). The clusters of points near each centromere are within 1.5 cM of the
target gene (cis) but are further away in physical distance due to the low recombination rate and lower mapping resolution in this region. Grey and
white shading denote the different chromosome arms. The two trans hotspots we identified are labeled on the right axis (See Figure 4).
doi:10.1371/journal.pgen.1004322.g001

Table 1. Numbers of cis- and trans-eQTL mapped for
different models.

cis trans Total

Model

pA+pB 7220 121 7341

pA only 303 7 310

pB only 252 19 271

Total 7775 147 7922

doi:10.1371/journal.pgen.1004322.t001

eQTLs Are Multiallelic in Drosophila
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range:0.35–0.84). The estimated haplotype means follow this

pattern and are correlated with the estimated effects for the timeless

cis-eQTL in most cases (average absolute value correlation: 0.65;

min: 0.03; max: 0.99). The gene timeless (tim) is expressed in the

adult central nervous system [37] and is involved in transcriptional

regulation of circadian rhythm [38].

Not all genes in the TQTLA interval are included in our

expression set. For example, some genes may have been dropped

due to the presence of SNPs in probes, or were not included in the

Nimblegen probe set to begin with. For TQTLA, 23 genes in the

interval are not represented in the expression set. However, none

of these genes are associated with any terms involving circadian

rhythm, regulation of gene expression, or transcription (http://

FlyBase.org) [39], and we therefore do not consider any of these

likely candidate genes.

The genes associated with TQTLB are enriched for several GO

terms including compound eye pigmentation (2/11 genes;

P = 0.005), the umbrella term: single-organism metabolic process

(6/11 genes; P = 0.007), and several specific metabolic process

terms: tryptophan metabolic process (2/11 genes; P = 0.008),

indolalkylamine metabolic process (2/11 genes; P = 0.0008),

indole-containing compound metabolic process (2/11 genes;

P = 0.002), aromatic amino acid family metabolic process (2/11

genes; P = 0.006). Once again we performed PCA to create a

composite variable. sugarbabe (sug) was the gene most highly

correlated with the TQTLB composite variable (r = 20.63) and

does have a significant cis-eQTL. All other genes in the interval

had a correlation with an absolute value of less than 0.4. Loadings

were again fairly even (absolute value range for all other genes:

0.08–0.39). Pairwise correlations between the transcripts associat-

ed with TQTLB and the expression measures in the interval

showed sugarbabe to be most highly correlated in all cases except

two: gene CG5321 and gene CG6834 (absolute value of correlation

range for all other genes: 0.40–0.52). These two genes were also

the two with the lowest loading values on the composite variable.

The correlation between the estimated haplotype effects for the

cis-eQTL for sugarbabe, and the effects for the trans-eQTLs were

moderate (mean absolute value correlation: 0.24; min: 0.005; max:

0.44). The gene sugarbabe (sug) is expressed in the adult head [37], is

involved in regulation of transcription [40], is involved in

regulation of response to starvation [41], and is part of the

insulin-like growth factor signaling pathway [41]. The 21 genes

not included in the interval are not associated with any terms

involving metabolism, regulation of gene expression, or transcrip-

tion (http://FlyBase.org) [39].

We have identified two trans hotspots, and, in both cases, we

were able to use our expression dataset to narrow the causative

gene to a single likely candidate gene. Previous eQTL studies have

identified many more trans hotspots that regulate many more genes

(hundreds or thousands) than our two identified hotspots

(TQTLA: 16 genes; TQTLB: 11 genes; e.g. [27,42], reviewed in

[24,26]). However, while some of these global regulators of gene

expression have been confirmed as true signals, most notably in

yeast [43,44], Kang et al. [43] show how hotspots can result from

confounding factors such as batch effects. In our dataset, we

employed PCA to correct for possible batch effects [45]. This

method has been shown to increase power to detect eQTL

[29,45,46], however, it makes identifying even true trans global

regulators impossible. The signal that results from a global

regulator is statistically indistinguishable from an unmeasured

batch effect. In addition, even true global regulators can confound

the detection of other true eQTLs, and correcting for these true

global regulators increases the power to detect these other

associations [43,45]. It is possible to distinguish true trans hotspots

from batch effects using biological replicates [43], but for our study

we chose to maximize the number of RILs rather than increase

replication to maximize our statistical power to map eQTL. As a

result, we are unable to detect many trans hotspots in this study.

However, our stringent statistical correction does give us increased

confidence that the eQTL we do identify are indeed true signals.

Most eQTLs are multiallelic
The vast majority of our eQTLs appear to be multiallelic

(Figure S1). In 95% of cases, the number of alleles estimated at

Figure 2. The distributions of the percentage of the genetic variation (A) and phenotypic variation (B) explained for cis- (black line)
and trans- (blue line) eQTL. Estimates of the percentage of genetic variance explained can be greater than 100% due to underestimates of
heritability for transcripts and/or overestimates of effect sizes of eQTL.
doi:10.1371/journal.pgen.1004322.g002

eQTLs Are Multiallelic in Drosophila
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cis-eQTL was 3 or greater. For trans-eQTL this percentage was

somewhat lower, at 78%. Figure 5 shows an example of an eQTL

where the best model is a two allele model and of an eQTL

where the full haplotype model is the best model. In cases where

we estimated multiple alleles, we were able to explain additional

phenotypic variance compared to the best two allele model

(Figure S2), sometimes as much as an additional 27%. We

investigated our ability to accurately estimate the number of

alleles by performing a simulation designed to provide the highest

power to distinguish between different alleles (see methods). Our

simulation revealed that our estimator underestimates the

number of alleles in 63% of cases, correctly estimates the true

number of alleles in 26% of cases, and overestimates the number

of alleles in 10% of cases (Figure 6). This bias toward

underestimating the number of alleles gets increasingly severe

as the true number of alleles increases. Our simulations with a

lower effect size (5%) and normally distributed allelic effects both

resulted in an even stronger bias toward underestimating the true

number of alleles. Our allele number distribution for cis-eQTLs is

no doubt composed of a mixture of eQTLs of varied numbers of

true alleles. Overall, it is closest to the distribution we obtain for a

simulation of ,5 alleles. So while most of our estimates for cis-

eQTL are for 3–4 alleles, many may be determined by many

more alleles.

Our results indicate widespread allelic heterogeneity for both

cis- and trans-eQTLs. The focus of mapping studies is often to

Figure 3. Distributions of the width of our confidence intervals for eQTL in A & C) physical distance (kb) and B & D) genetic distance
(cM) using either a 3 LOD drop (A & B) or the Bayesian credible interval (C & D). Black lines show CIs for cis-eQTL while blue lines show CIs
for trans-eQTL.
doi:10.1371/journal.pgen.1004322.g003

eQTLs Are Multiallelic in Drosophila
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identify the single causative variant underlying a significant signal,

the implicit assumption being that the causative loci are biallelic.

cis-eQTL in particular, with their large effects, are thought to be

more likely than other traits to have a simple genetic architecture

and be biallelic [22,28–30]. Baud et al. [22] found some support

for this idea when comparing a two allele model to the full

haplotype model in hippocampus eQTLs in the heterogeneous

stock mouse resource [32]. They found that in 97% of cases, the

two allele model was superior for cis-eQTLs while trans-eQTLs

were more likely to be multiallelic [22]. However, in contrast to

these findings, cis-eQTLs have been found to be multiallelic in

Drosophila [47], Arabidopsis [42], and humans [31,48]. Our results

strongly confirm the result of multiallelism in Drosophila with 95%

of cis-eQTLs estimated to be due to 3 or more alleles. This result

indicates that in Drosophila, widespread allelic heterogeneity exists

at one of the most basic levels of genetic variation: cis-regulatory

variation.

Widespread allelic heterogeneity is one potential explanation for

the missing heritability problem in the study of complex traits.

Allelic heterogeneity presents a statistical challenge for GWAS [7].

GWAS utilize natural populations and interrogate each SNP (or

other specific variant) for association with the phenotype of

interest. At the single gene level, it is difficult to distinguish

between simple linkage disequilibrium between a single causative

variant and other, nearby neutral SNPs, and multiple independent

causative SNPs. If GWAS focus only on the strongest association

at a locus, in the presence of allelic heterogeneity that individual

variant will account for less of the variation than the entire gene,

causing the effect of the locus to be underestimated [7]. In this

respect, haplotype-based mapping approaches, such as the one

described here, have an advantage because entire haplotypes (and

thus an entire set of causative variants associated with a single

gene) are tested together. The effect size associated with the

causative gene will tend to be larger and easier to detect in this

framework. This effect, combined with the more favorable

frequencies of alleles in linkage based panels could explain why

these studies tend to explain very large proportions of the heritable

variation [9,21,49], while GWAS grapple with large amounts of

missing heritability. However, one drawback of current haplotype-

based methods is that they do not have single gene resolution and

therefore identifying the causative gene within the QTL interval

can be a significant challenge. Furthermore, while identifying the

causative loci under allelic heterogeneity is easier with haplotype

based methods, the subsequent identification of the causative SNPs

within the loci is made much more complicated by heterogeneity

[17,18,50].

Figure 4. The density of trans-eQTLs along the genome. Density is the number of genes (not transcripts) with a trans-eQTL per 500 kilobases.
Grey and white shading denote the different chromosome arms. Potential hotspots (regions with a density greater than 5) are noted.
doi:10.1371/journal.pgen.1004322.g004

Table 2. trans-eQTL regulating multiple genes.

# eQTL chr lower (Mb) upper (Mb) # genes in interval
# genes in interval
with cis-eQTL

TQTLA 16 2L 3.22 3.65 53 14

TQTLB 11 2R 8.33 9.12 119 50

doi:10.1371/journal.pgen.1004322.t002

eQTLs Are Multiallelic in Drosophila
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Allelic heterogeneity is typical for Mendelian diseases (http://

www.omim.org/) and it has been suggested as the likely model

for quantitative traits [51]. There is a growing body of empirical

[2,17,22,31,42,47,50] and theoretical [7] support for this idea.

For example, one of the largest GWA studies found support for

allelic heterogeneity for human height by identifying several

cases of multiple SNPs likely associated with the same gene [2].

Even age related macular degeneration, the first successful

GWA study [52], has subsequently been shown to harbor

multiple functional alleles [53–56]. Our results should therefore

not be surprising. However, they do suggest the community

should focus on developing experimental designs and analytical

methods, e.g., [7], that function well under a model of allelic

heterogeneity.

Methods

Mapping population
We used RILs from the DSPR (http://FlyRILs.org) to map

genome-wide expression variation. The DSPR has been described

in detail previously. Complete details of the development of the

DSPR, founder whole genome re-sequencing, and RIL genotyp-

ing are described in [17]. The development of the hidden Markov

model to infer the mosaic structure of the RILs and the power and

mapping resolution of the DSPR for QTL mapping are described

in [18]. Briefly, the DSPR is a multi-founder advanced intercross

panel consisting of a set of over 1700 RILs of Drosophila melanogaster.

Two 8-way synthetic populations (pA and pB) were created from

two independent sets of 7 inbred founder lines (A1–A7 or B1–B7)

Figure 5. Standardized estimated means for each founder genotype for single observed cis-eQTL where A) the full model is the best
model, and B) a two allele model is the best model. The gene name for each is displayed in the upper left corner.
doi:10.1371/journal.pgen.1004322.g005

eQTLs Are Multiallelic in Drosophila
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with one additional line (AB8) shared by both populations. Each

synthetic population was maintained as two independent replicate

subpopulations (pA1 and pA2 or pB1 and pB2), kept at a large

population size, and allowed to freely recombine for 50

generations. At generation 50, each subpopulation gave rise to

,500 RILs via 25 generations of full-sib mating. The genomes of

the original fifteen inbred founder lines have been completely re-

sequenced, and the complete underlying founder haplotype

structure of all RILs in the panel has been determined via

Restriction-Associated DNA (RAD) sequencing along with a

hidden Markov model (HMM).

In order to avoid potentially mapping QTL for inbreeding

depression, we phenotyped trans-heterozygote F1 individuals from

crosses between pA females and pB males. The crosses were done to

maintain the subpopulation structure by crossing pA1 to pB2 and

pA2 to pB1. In both cases, we arbitrarily crossed pA and pB RILs

with the same line number (i.e., pA11*pB21, …, pA1n*pB2n,

pA21*pB11, …, pA2n*pB1n). For each of 596 crosses, we generated

4–6 replicate cross vials containing 10 virgin pA females and 10 pB

males and cleared the adults after 24–48 hours to maintain roughly

equal larval density across experimental vials. Both the inbred RIL

parents and the experimental trans-heterozygous cross progeny were

raised on standard cornmeal-yeast-molasses media at 25uC, 50%

relative humidity, and on a 12:12 light:dark regime.

RNA isolation and arrays
Progeny from each cross vial were allowed to emerge and mate

in the source vial for 2–4 days. Then 250–300 females were

harvested over CO2 from the multiple replicate vials. Since we did

not isolate virgin females on eclosion, females are very likely

mated. These experimental females were kept for 24 hours in fresh

vials to minimize any effects of the anesthesia before the heads

were isolated (3–5 days old). Heads were removed by transferring

the females without anesthesia to a 50 ml conical bottom

centrifuge tube, freezing in liquid nitrogen, vigorously vortexing,

and sieving using dry ice-chilled brass analytical sieves (mesh sizes

Figure 6. Estimated number of alleles for simulated (grey circles) and observed data (blue circles). The true number of alleles versus the
estimated number of alleles is displayed for simulated data. The size of each circle and the number displayed denotes the percentage of times each
number of alleles is estimated for a given true number of alleles. The estimated number of alleles for our cis- and trans-eQTL are shown at the top of
the plot.
doi:10.1371/journal.pgen.1004322.g006
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0.0165 and 0.0278 inches), separating heads from bodies and from

legs and wings. Head samples were stored at 280uC until RNA

isolation.

We did not have any technical or biological replicates aside

from the effect of pooling 250–300 individuals, collected from

multiple source vials, for each sample. This was intentional

because we are mainly interested in the variance among RILs.

There were two exceptions to this lack of replication. Crosses

A1.2996B2.299 and A1.3506B2.350 were prepared indepen-

dently twice.

RNA was isolated using TRIzol Reagent (Life Technologies),

cleaned up using RNeasy Mini spin columns (Qiagen),

concentrated—if necessary—using a vacuum centrifuge, and

shipped to the Carver Center for Genomics Microarray Center

at the University of Iowa for cDNA synthesis and array

hybridization. We used Nimblegen 126135 K arrays to assay

genome-wide gene expression. These arrays assay 16,637

transcripts with eight 60 bp probes per transcript. Each array

holds 12 different crosses.

Data analysis pipeline
All data analysis was performed in R [57]. Initially, we

performed standard quantile normalization and corrected for

background effects using the normalize and backgroundCorrect

functions in the oligo package to correct for any overall array

effects [58–61]. We then created a custom probe-to-transcript

map using the most recent version of the CDS file available at

FlyBase (v. 5.48). We blasted all probe sequences against the

CDS, requiring an exact match [62,63]. We eliminated any

probe sequences without an exact 60 bp match to a transcript

(6842 probes). We did not require a unique match given many

transcripts from the same gene share portions of their

sequences. Thus a single probe can correspond to multiple

transcripts.

Single nucleotide polymorphisms in probe sequences are known

to affect array hybridization and thus expression measurement

[64–68]. We took advantage of the availability of full genome

sequences for all 15 founder lines to identify SNPs within probe

sequences. We first updated the alignment and SNP calling for the

founder re-sequencing data using the Burrows-Wheeler Aligner

(BWA) [69] with the following switches: -m 50000000 -R 5000,

followed by the SAMtools [70] mpileup command (the initial

alignment used Mosaik and a custom SNP caller, see [17]) to

obtain an accurate, comprehensive list of SNPs in the founder lines

(http://FlyRILs.org/Data, Release 3). We also applied the

following filters: 1) at least one founder was fixed for the minor

allele and at least three founders were fixed for the major allele

(given a coverage of 106), 2) minimum overall coverage of 90 (5

per sample), and 3) maximum overall coverage of 3600. A large

proportion of our probe sequences contained SNPs segregating in

the set of DSPR founder lines. Because we have the full genome

sequences in silico of all RILs in the panel, we were able to identify

all positions in probes that are SNPs in our RIL panel and test for

the effect of each SNP on the expression measurement. We

discarded any probes containing multiple SNPs (22018 probes).

For probes containing a single SNP, we used the haplotype

probabilities from the hidden Markov model to infer the

probability each RIL harbored the minor allele and assigned a

genotype value to each cross by adding the paternal and maternal

probabilities. In the case of perfect certainty, genotype values are:

2 = AA, 1 = Aa, and 0 = aa. We then tested for the effect of the

SNP on the expression measurement by fitting the following

model:

y~mzbsSzbmM,

where y is the expression measurement, S is subpopulation, M is

the cross genotype at the marker, and bs and bm are the

corresponding effect estimates. We then eliminated all probes with

a p-value less than 0.05 (21141 probes).

Following re-mapping of probes and elimination of probes with

SNPs affecting expression, transcripts were associated with a

variable number of probes instead of each transcript being

associated with exactly 8 probes as in the original NimbleGen

array design. We eliminated any transcript associated with fewer

than four probes. Next, we performed standard RMA using the

basicRMA function in the oligo package [61] to combine probe-

specific data and generate a single expression measure per

transcript. Many genes are associated with multiple transcripts.

Whether the expression of different transcripts can be indepen-

dently assessed is dependent on how many probes uniquely map to

each transcript. We calculated pairwise correlations between each

transcript in each set of transcripts associated with a single gene. If

all of the pairwise correlations between the set of transcripts were

. = 0.95, we used the average expression for the gene. Otherwise,

we mapped each transcript separately. We will refer to all

expression measures (including those averaged across transcripts

for a single gene) simply as transcripts for clarity.

We followed the methods of [29,46] and used principal

components analysis (PCA) to minimize batch effects [45] and

increase our power to detect QTL. Following quantile normali-

zation of each transcript to coerce each transcript distribution to

be normal, we performed PCA on the entire set of transcripts. We

selected the first 10 principal components to correct our expression

measurements. The percentage of the variance explained by each

remaining principal component was below 1% (Figure S3). We

then fit the following model

yi~bs,iSz
X10

j~1
bjxj ,

where yi is the ith expression measurement, S is subpopulation, xj is

the jth principal component, and bs,i and bj are the corresponding

effect estimates. We used the resulting residuals for the remaining

analyses. We performed an additional round of quantile normal-

ization on these residuals to ensure normality.

We estimated the narrow-sense heritabilities for all transcripts

by fitting a linear mixed model using the polygenic function in

the GenABEL package [71]. Briefly, the model includes a random

effect polygenic term whose variance is determined by the kinship

matrix between RIL crosses. We calculated the kinship matrix

using the genome-wide haplotype assignments resulting from the

HMM. At each position spaced every 0.025 cM, we calculated the

probability of identity by decent and averaged these across the

genome to obtain the relationship coefficient. Our kinship matrix

is thus estimated over genetic distance. We then used the

polygenic function to calculate heritabilities for each transcript

[71].

To map eQTLs, we first selected transcripts expressed above

background levels. We utilized the two replicated samples,

A1.2996B2.299 and A1.3506B2.350, to identify the point where

measurements were less repeatable and excluded all transcripts

with expression levels below this point (Figure S4). This cutoff

excluded approximately 23% of transcripts. For all included

transcripts, we performed haplotype-based genome scans by fitting

the following model at regularly spaced positions every 10 KB

across the genome (11768 positions; http://FlyRILs.org/Data,
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Release 3).

yr,i~mz
X7

j~1
bA,jGA,jz

X7

j~1
bB,jGB,j ,

where yr,i is the ith transcript, m is the grand mean, GA,j are the

genotype probabilities for the jth paternal RIL, GB,j are the

genotype probabilities for the jth maternal RIL, and bA,j, and bB,j

are the corresponding effect estimates. Because we assayed only

females, the model for the X chromosome is the same as for the

autosomes. At each position, we calculated the F-statistic for the

overall effect of genotype and obtained LOD scores.

To identify the statistical significance threshold, we performed

1000 permutations of the expression measures [72]. The entire set

of expression measures was permuted together to maintain the

correlation structure in the dataset. We used these permutations to

determine a conservative genome-wide, experiment-wise 5%

significance threshold (threshold = 14.99). We also determined a

separate threshold for cis-eQTL. We defined cis-eQTL as QTL

occurring within 1.5 cM of the transcription start [18] site for each

transcript (1.5 cM is our typical confidence interval width). To

define a cis-only threshold, we only included the LOD scores for

the positions within 1.5 cM of the transcription start for each gene

(threshold = 14.4).

We identified all peaks with LOD scores exceeding the above-

defined thresholds. When multiple nearby peaks were identified,

we determined whether their 3 LOD drop intervals overlapped,

and, if so, only the peak with the highest LOD score was retained.

We expect 3 LOD drops to be a conservative estimate of the 95%

confidence interval. Standard 2 LOD drops have been shown to

be overly narrow for pA6pB cross designs [18]. It should be noted

however, that confidence intervals on QTL locations are not true

95% confidence intervals and effect size, sample size, and the

number of haplotypes in the model affect the degree of coverage.

We also calculated Bayes credible intervals, for which 95%

coverage tends to be more consistent [73,74].

In a pA6pB cross, a mapped QTL may be due to genomic

variation at that position in only one population or in both. We

identified peaks associated with only a single population using

Akaike’s Information Criterion (AIC). We calculated the AIC for

three models: pA alone, pB alone, and pA & pB. The smallest AIC

indicates the model with the best fit. Thus any cases in which the

lowest AIC resulted from a reduced model, the QTL peak was

concluded to be due to variation in a single population.

We identified trans-eQTLs influencing multiple transcripts by

estimating the trans-eQTL density across the genome using a

500 kb sliding window with a step size of 1 kb. Our estimate of

density included only unique genes, not transcripts to avoid

counting multiple transcripts associated with a single gene as

independent events. If trans-eQTL density in a window exceeded

the density expected by chance under a Poisson distribution, we

concluded it was a significant trans hotspot. This threshold for a

Poisson distribution given the total number of trans-eQTLs (147),

the window size (500 kb), the size of the genome tested (118 Mb)

and the Bonferonni corrected P-value threshold (117,741 tests;

P = 4.261027) is a trans-eQTL density greater than 6. We

delineated the size of these hotspot regions as the lowermost and

uppermost confidence interval bound for any trans-eQTL peak

included in a window exceeding a density of 6.

Our initial scan identified 3 trans hotspots but upon further

investigation, we determined one to be a false signal resulting from

a single gene family. All of the eQTL peaks associated with this

hotspot represent 13 members of a single gene family located on

the X chromosome: Stellate (Ste). In addition, members of this

family also occur at an unlocalized region in the heterochromatin

on the X chromosome. The ‘‘trans-’’ eQTL we map regulating this

family is located at the very tip of the X chromosome, making it

very likely we are tagging this heterochromatic location of Stellate

members, and it is in fact an additional cis effect. In fact, all

thirteen members show two peaks, one cis peak and a second

‘‘trans’’ peak at the tip of the X, indicating most of our probes for

these genes are tagging multiple members of this gene family. In

addition, Stellate is expressed in adult males and involved in

spermatogenesis (http://FlyBase.org) [39]. It is likely we are seeing

high expression due to large numbers of copies of gene family

members (,200 copies) [75]. We therefore excluded this trans

hotspot.

Estimating the number of alleles at eQTLs
We estimated the number of alleles at each eQTL using a

model comparison technique similar to the method employed by

Yalcin et al. [76] and Baud et al. [22] The major difference in

our approach is that we consider models with more than 2

alleles and do not restrict our analysis to specific SNPs in the

QTL interval. The merge analysis employed by Baud et al. [22]

considered all two allele models associated with a single SNP

within the QTL interval. We simply assign different alleles to

different haplotypes without those necessarily corresponding to

SNPs in the interval. This method also allows us to consider

models with several alleles. For each eQTL, at the peak

position, we fit all possible models for different numbers of

alleles, fitting a maximum of 11337 models at each eQTL. We

first estimated the haplotype means at the peak, sorted these

means, and then fit all possible models that did not change the

order of the haplotype means for 2, 3, 4, 5, 6, 7, 8, and 16 (the

full model allowing different estimates for AB8 in pA RILs and

AB8 in pB RILs) alleles (Figure S5). We only included

haplotypes at the peak that occurred at least 5 times (at a

probability of greater than 95%) in our set of crosses.

Haplotypes at lower frequencies lead to inaccurate estimates

of haplotype means with large standard errors. For each possible

allele grouping, individual founder haplotype probabilities in

each allele group were summed to obtain a probability each RIL

harbored each allele group. For example, if haplotypes A3 and

A5 are grouped as a single allele named allele 1, and the

probabilities a given RIL cross harbors the A3 or A5 haplotype

are 0.90 and 0.03 respectively, then the probability that RIL

cross harbors allele 1 is 0.93 (i.e., the probability the RIL cross

harbors either A3 OR A5 and thus allele 1). Alleles were only

combined within pA and within pB given that the pA and pB

sets of probabilities are independent. The model fit was as

follows:

yr,i~mz
Xna

c~1
bA,cGA,cz

Xnb

d~1
bB,dGB,d ,

where yr,i is the ith transcript, m is the grand mean, na is the

number of pA allele groupings, nb is the number of pB allele

groupings, GA,c are the genotype probabilities for the cth

paternal allele group, GB,d are the genotype probabilities for

the dth maternal allele group, and bA,c, and bB,d are the

corresponding effect estimates. The model with the lowest P-

value was chosen as the best model and the number of alleles

associated with this model was recorded. We also explored using

Akaike’s information criterion (AIC) to choose the best model,

however simulations revealed a higher error rate using AIC (see

below). Table S3 provides hard coded genotype assignments for

all RIL crosses at all significant eQTL.
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Simulation
To test our method of estimating the number of alleles

associated with QTL, we simulated QTL stemming from between

2 and 15 different alleles and subsequently estimated the number

of alleles using the model comparison methodology described

above. We intentionally set up this simulation to make

distinguishing different alleles as easy as possible. We performed

1000 iterations for each of 2, 3, 4, 5, 6, 7, 8 and 15 alleles (the full

model assuming the same effect for AB8 in the pA and pB panels).

For each iteration, we randomly selected 600 pA RILs and

600 pB RILs from the DSPR panel and randomly paired them to

create pA-pB crosses. We then simulated a QTL in this set of RIL

crosses at a randomly selected position in the genome with the

chosen number of alleles. We assigned the different alleles equal

effects, because we found equal effects gave higher power to

distinguish different alleles compared to pulling effects from a

normal distribution (Figure S6). For example, for a four allele

model each founder haplotype was randomly assigned an effect of

1, 2, 3, or, 4. We assumed an additive model to calculate a genetic

effect for each cross. We generated a set of random normal

deviates N(m= 0, s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{z

z
:s2

G

r
) to correspond to environmental

variance where z = the percent of the phenotypic variance

explained by the QTL and s2
G is the genetic variance at the

QTL. The percent of the total phenotypic variance explained by

the QTL was randomly chosen from our observed distribution of

phenotypic variance explained by cis-eQTLs. These effects tend to

be quite large, however, we found large effects lead to higher

power to distinguish different alleles (Figure S7). We then

estimated the number of alleles at our simulated QTL as described

above. We used two methods to determine the best model: 1) the

model with the lowest P-value, and 2) the model with the lowest

AIC. Our results showed the method using P-values had a greater

accuracy (P-value method: 26% accuracy; AIC method: 19%

accuracy). More importantly, the AIC method overestimates the

true number of alleles more often, estimating more than two alleles

in 83% of cases when the true number of alleles is two (Table S2).

We prefer the method that is more conservative, meaning it has a

greater tendency to underestimate rather than overestimate the

number of alleles, and we therefore use the P-value method in all

subsequent analysis (Figure S8). Complete sensitivity information

for the different methods and the different simulation models can

be seen in Figures S5, S6, S7 and in Table S2.

Supporting Information

Figure S1 A) Histogram of the estimated number of alleles using

the lowest P-value to determine the best model (see Methods). B)

Histogram of the estimated number of alleles using AIC to

determine the best model.

(EPS)

Figure S2 Boxplot of the additional percent variance explained

by the best multiallelic model compared to the best two allele

model for cases where a multiallelic model is best. The x-axis

shows the number of alleles estimated in the best multiallelic

model. The black center line of the box is the median additional

percent variance explained for each estimated number of alleles

(lower edge of the box is the first quartile, upper edge is the third

quartile, whiskers extend to 1.5 times the interquartile range).

(PDF)

Figure S3 The proportion of variance accounted for by the first

50 eigentraits (principal components) following a principal

components analysis on all transcript expression measures. The

vertical dotted line denotes the cut off at the 10th principal

component. Only these first 10 principal components were

statistically corrected for in the subsequent analyses.

(PDF)

Figure S4 The correlation between replicate measures of

transcript expression for RIL cross A: A1.2996B2.299 and C:

A1.3506B2.350. The absolute difference between the replicates

versus the average expression for each transcript is shown for RIL

cross B: A1.2996B2.299 and D: A1.3506B2.350.

(PDF)

Figure S5 Diagram of the procedure to estimate the number of

alleles at a QTL. Estimated haplotype means are sorted and then

all possible models are tested. The various models are shown for

the 3 allele case. The model with the lowest p value is chosen as

the best model and the associated number of alleles is our estimate

of the number of alleles at the QTL.

(PDF)

Figure S6 The true number of alleles versus the estimated

number of alleles for a simulation where the genetic effect for each

allele is sampled from a normal distribution. The size of each circle

and the number displayed denotes the percentage of times each

number of alleles is estimated for a given true number of alleles.

The estimated number of alleles for our cis- and trans-eQTL are

shown at the top of the plot in blue.

(PDF)

Figure S7 The true number of alleles versus the estimated

number of alleles for a simulation with a constant effect size of 5%

for the simulated QTL. The size of each circle and the number

displayed denotes the percentage of times each number of alleles is

estimated for a given true number of alleles. The estimated

number of alleles for our cis- and trans-eQTL are shown at the top

of the plot in blue.

(PDF)

Figure S8 The true number of alleles versus the estimated

number of alleles for a simulation identical to that described in the

main text but with AIC determining the best model instead of the

lowest P-value. The size of each circle and the number displayed

denotes the percentage of times each number of alleles is estimated

for a given true number of alleles. The estimated number of alleles

for our cis- and trans-eQTL using the AIC method are shown at the

top of the plot in blue.

(PDF)

Table S1 Complete details for all eQTL. Columns are as

follows: Name = eQTL identifier, TID = transcript identifier (CG

name) for transcripts mapped separately, gene identifier otherwise,

GID = gene identifier (CG name), chr = chromosome location of

eQTL peak, peakp = physical position of eQTL peak, peaklpL =

lower confidence interval bound using 3 LOD drop (physical

position), peakupL = upper confidence interval bound using 3

LOD drop (physical position), peaklpB = lower confidence interval

bound using Bayesian credible interval (physical position),

peakupB = upper confidence interval bound using Bayesian

credible interval (physical position), peakg = genetic position of

eQTL peak, peaklgL = lower confidence interval bound using 3

LOD drop (genetic position), peakugL = upper confidence interval

bound using 3 LOD drop (genetic position), peaklgB = lower

confidence interval bound using Bayesian credible interval (genetic

position), peakugB = upper confidence interval bound using

Bayesian credible interval (genetic position), LOD = LOD score

at eQTL peak, Pvar = percent phenotypic variance explained

by eQTL peak, h2 = heritability of transcript abundance,
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psdist = physical distance to transcript start site, gsdist = genetic

distance to transcript start site, cis = true/false for whether eQTL

is cis, GlocC = chromosomal location of transcript, GlocP = phy-

sical location of transcript start site, GlocG = genetic location of

transcript start site.

(TXT)

Table S2 Sensitivity of the minimum P-value and AIC method

of estimating different alleles for different simulation models. For

each, the probability of estimating 2 or more alleles given a true

value of 2 or more alleles is displayed.

(DOC)

Table S3 Hard coded founder genotype assignments at all

significant eQTL. Each RIL at each eQTL peak is assigned the

most likely founder genotype, given the probability is greater than

0.95. This corresponds to a 2 digit number with the assignment

from the population A RIL and the population B RIL. E.g. the

number 24 indicates that RIL cross has an A2B4 genotype. If the

highest founder genotype probability is less than 0.95 it is coded as

uncertain. The number 9 indicates an uncertain assignment.

Column names for columns 5 to 601 are the maternal RIL ID.

The paternal RIL is the RIL with the matching number in the

corresponding subpopulation (see Methods). Other columns are:

Name = eQTL identifier, TID = transcript identifier (CG name)

for transcripts mapped separately, gene identifier otherwise,

GID = gene identifier (CG name), chr = chromosome location of

eQTL peak.

(ZIP)
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