3,135 research outputs found

    A Bulk-Parallel Priority Queue in External Memory with STXXL

    Get PDF
    We propose the design and an implementation of a bulk-parallel external memory priority queue to take advantage of both shared-memory parallelism and high external memory transfer speeds to parallel disks. To achieve higher performance by decoupling item insertions and extractions, we offer two parallelization interfaces: one using "bulk" sequences, the other by defining "limit" items. In the design, we discuss how to parallelize insertions using multiple heaps, and how to calculate a dynamic prediction sequence to prefetch blocks and apply parallel multiway merge for extraction. Our experimental results show that in the selected benchmarks the priority queue reaches 75% of the full parallel I/O bandwidth of rotational disks and and 65% of SSDs, or the speed of sorting in external memory when bounded by computation.Comment: extended version of SEA'15 conference pape

    Magnetoencephalographic Correlates of Perceptual State During Auditory Bistability

    Get PDF
    Bistability occurs when two alternative percepts can be derived from the same physical stimulus. To identify the neural correlates of specifc subjective experiences we used a bistable auditory stimulus and determined whether the two perceptual states could be distinguished electrophysiologically. Fourteen participants underwent magnetoencephalography while reporting their perceptual experience while listening to a continuous bistable stream of auditory tones. Participants reported bistability with a similar overall proportion of the two alternative percepts (52% vs 48%). At the individual level, sensor space electrophysiological discrimination between the percepts was possible in 9/14 participants with canonical variate analysis (CVA) or linear support vector machine (SVM) analysis over space and time dimensions. Classifcation was possible in 14/14 subjects with non-linear SVM. Similar efects were noted in an unconstrained source space CVA analysis (classifying 10/14 participants), linear SVM (classifying 9/14 subjects) and non-linear SVM (classifying 13/14 participants). Source space analysis restricted to a priori ROIs showed discrimination was possible in the right and left auditory cortex with each classifcation approach but in the right intraparietal sulcus this was only apparent with non-linear SVM and only in a minority of particpants. Magnetoencephalography can be used to objectively classify auditory experiences from individual subjects

    How COVID-19 CHANGED NEW NURSE ORIENTATION

    Get PDF
    Universities were no longer able to do in person learning for nursing students. Nursing students were being taught vital skills like inserting an IV catheter via online simulation. The number of hours nursing students had to participate in clinical hours at the hospital was diminished due to the hospitals not allowing in nursing students. This created a huge educational deficit in nursing students. The nursing students who graduated during the COVID-19 pandemic are arguably less skilled than their predecessors before them. To fill this educational gap, additional training and orientation time must be provided to allow for fully competent new graduate hires. Allowing more preparation for new graduates will reduce errors thus reducing hospital costs

    AGN feedback in the Phoenix cluster

    Get PDF
    Active galactic nuclei (AGN) release a huge amount of energy into the intracluster medium (ICM) with the consequence of offsetting cooling and star formation (AGN feedback) in the centers of cool core clusters. The Phoenix cluster is among the most massive clusters of galaxies known in the Universe. It hosts a powerful starburst of several hundreds of Solar masses per year and a large amount of molecular gas in the center. In this work we use the high-resolution Reflection Grating Spectrometer (RGS) on board XMM-Newton to study the X-ray emitting cool gas in the Phoenix cluster and heating-cooling balance. We detect for the first time evidence of O VIII and Fe XXI-XXII emission lines, the latter demonstrating the presence of gas below 2 keV. We find a cooling rate of 350 (-200,+250) Msun/year below 2 keV (at the 90% confidence level), which is consistent with the star formation rate in this object. This cooling rate is high enough to produce the molecular gas found in the filaments via instabilities during the buoyant rising time. The line broadening indicates that the turbulence (~ 300 km/s or less) is below the level required to produce and propagate the heat throughout the cool core. This provides a natural explanation to the coexistence of large amounts of cool gas, star formation and a powerful AGN in the core. The AGN activity may be either at a young stage or in a different feedback mode, due to a high accretion rate

    A massive reservoir of low-excitation molecular gas at high redshift

    Full text link
    Molecular hydrogen is an important component of galaxies because it fuels star formation and accretion onto AGN, the two processes that generate the large infrared luminosities of gas-rich galaxies. Observations of spectral-line emission from the tracer molecule CO are used to probe the properties of this gas. But the lines that have been studied in the local Universe, mostly the lower rotational transitions of J = 1-0 and J = 2-1, have hitherto been unobservable in high-redshift galaxies. Instead, higher transitions have been used, although the densities and temperatures required to excite these higher transitions may not be reached by much of the gas. As a result, past observations may have underestimated the total amount of molecular gas by a substantial amount. Here we report the discovery of large amounts of low-excitation molecular gas around the infrared-luminous quasar, APM 08279+5255 at z = 3.91, using the two lowest excitation lines of 12CO (J = 1-0 and J = 2-1). The maps confirm the presence of hot and dense gas near the nucleus, and reveal an extended reservoir of molecular gas with low excitation that is 10 to 100 times more massive than the gas traced by higher-excitation observations. This raises the possibility that significant amounts of low-excitation molecular gas may lurk in the environments of high-redshift (z > 3) galaxies.Comment: To appear as a Letter to Nature, 4th January 200

    Deep 230-470 MHz VLA observations of the mini-halo in the Perseus cluster

    Get PDF
    © 2017 The Authors. We present a low-frequency view of the Perseus cluster with new observations from the Karl G. Jansky Very Large Array (JVLA) at 230-470 MHz. The data reveal a multitude of new structures associated with the mini-halo. The mini-halo seems to be influenced both by the AGN activity and the sloshing motion of the cool core cluster's gas. In addition, it has a filamentary structure similar to that seen in radio relics found in merging clusters. We present a detailed description of the data reduction and imaging process of the dataset. The depth and resolution of the observations allow us to conduct for the first time a detailed comparison of the mini-halo structure with the X-ray structure as seen in the Chandra X-ray images. The resulting image very clearly shows that the mini-halo emission is mostly contained behind the western cold front, similar to that predicted by simulations of gas sloshing in galaxy clusters, but fainter emission is also seen beyond, as if particles are leaking out. However, due to the proximity of the Perseus cluster, as well as the quality of the data at low radio frequencies and at X-ray wavelengths, we also find evidence of fine structure. This structure includes several radial radio filaments extending in different directions, a concave radio structure associated with the southern X-ray bay and sharp radio edges that correlate with X-ray edges. Minihaloes are therefore not simply diffuse, uniform radio sources, but rather have a rich variety of complex structures. These results illustrate the high-quality images that can be obtained with the new JVLA at low radio frequencies, as well as the necessity to obtain deeper, higher fidelity radio images of mini-haloes in clusters to further understand their origin
    • …
    corecore