589 research outputs found

    An integrated framework to assess spatial and related implications of biomass delivery chains

    Get PDF
    The overall objective of the ME4 research project was to develop an integrated framework to assess and analyse the spatial implications and related opportunities and consequences of an increased implementation of biomass delivery chains for energy, biofuels and biochemicals at different geographical levels. The research project has addressed four main topics: biomass in The Netherlands and EU present and future situation; framework tool for integrated spatial design and assessment of regional biomass chains; regional biomass chains evaluation; dialogue on sustainability of bioenergy

    Quantum teleportation of entangled coherent states

    Get PDF
    We propose a simple scheme for the quantum teleportation of both bipartite and multipartite entangled coherent states with the successful probability 1/2. The scheme is based on only linear optical devices such as beam splitters and phase shifters, and two-mode photon number measurements. The quantum channels described by multipartite maximally entangled coherent states are readily made by the beam splitters and phase shifters.Comment: 4 pages, no figure

    Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime

    Full text link
    The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross phase modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schr\"odinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on non-linear interaction via double-EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:5050:50 beam splitter and two photodetectors. In order to show the entanglement of a generated entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section

    Deformations of quantum field theories on spacetimes with Killing vector fields

    Full text link
    The recent construction and analysis of deformations of quantum field theories by warped convolutions is extended to a class of curved spacetimes. These spacetimes carry a family of wedge-like regions which share the essential causal properties of the Poincare transforms of the Rindler wedge in Minkowski space. In the setting of deformed quantum field theories, they play the role of typical localization regions of quantum fields and observables. As a concrete example of such a procedure, the deformation of the free Dirac field is studied.Comment: 35 pages, 3 figure

    Dynamical locality and covariance: What makes a physical theory the same in all spacetimes?

    Full text link
    The question of what it means for a theory to describe the same physics on all spacetimes (SPASs) is discussed. As there may be many answers to this question, we isolate a necessary condition, the SPASs property, that should be satisfied by any reasonable notion of SPASs. This requires that if two theories conform to a common notion of SPASs, with one a subtheory of the other, and are isomorphic in some particular spacetime, then they should be isomorphic in all globally hyperbolic spacetimes (of given dimension). The SPASs property is formulated in a functorial setting broad enough to describe general physical theories describing processes in spacetime, subject to very minimal assumptions. By explicit constructions, the full class of locally covariant theories is shown not to satisfy the SPASs property, establishing that there is no notion of SPASs encompassing all such theories. It is also shown that all locally covariant theories obeying the time-slice property possess two local substructures, one kinematical (obtained directly from the functorial structure) and the other dynamical (obtained from a natural form of dynamics, termed relative Cauchy evolution). The covariance properties of relative Cauchy evolution and the kinematic and dynamical substructures are analyzed in detail. Calling local covariant theories dynamically local if their kinematical and dynamical local substructures coincide, it is shown that the class of dynamically local theories fulfills the SPASs property. As an application in quantum field theory, we give a model independent proof of the impossibility of making a covariant choice of preferred state in all spacetimes, for theories obeying dynamical locality together with typical assumptions.Comment: 60 pages, LaTeX. Version to appear in Annales Henri Poincar

    Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers

    Full text link
    We present a new methodology to determine the expansion history of the Universe analyzing the spectral properties of early type galaxies (ETG). We found that for these galaxies the 4000\AA break is a spectral feature that correlates with the relative ages of ETGs. In this paper we describe the method, explore its robustness using theoretical synthetic stellar population models, and apply it using a SDSS sample of \sim14 000 ETGs. Our motivation to look for a new technique has been to minimise the dependence of the cosmic chronometer method on systematic errors. In particular, as a test of our method, we derive the value of the Hubble constant H0=72.6±2.8H_0 = 72.6 \pm 2.8 (stat) ±2.3\pm2.3 (syst) (68% confidence), which is not only fully compatible with the value derived from the Hubble key project, but also with a comparable error budget. Using the SDSS, we also derive, assuming w=constant, a value for the dark energy equation of state parameter w=1±0.2w = -1 \pm 0.2 (stat) ±0.3\pm0.3 (syst). Given the fact that the SDSS ETG sample only reaches z0.3z \sim 0.3, this result shows the potential of the method. In future papers we will present results using the high-redshift universe, to yield a determination of H(z) up to z1z \sim 1.Comment: 25 pages, 17 figures, JCAP accepte

    Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV

    Full text link
    Charged-particle pseudorapidity densities are presented for the d+Au reaction at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and 60-80% centrality classes. Models incorporating both soft physics and hard, perturbative QCD-based scattering physics agree well with the experimental results. The data do not support predictions based on strong-coupling, semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4 GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80% centrality range; added additional discussion on centrality selection bia

    Scanning the phases of QCD with BRAHMS

    Full text link
    BRAHMS has the ability to study relativistic heavy ion collisions from the final freeze-out of hadrons all the way back to the initial wave-function of the gold nuclei. This is accomplished by studying hadrons with a very wide range of momenta and angles. In doing so we can scan various phases of QCD, from a hadron gas, to a quark gluon plasma and perhaps to a color glass condensate.Comment: 8 pages, 6 figures, proceedings of plenary talk at Quark Matter 2004 conferenc

    On the Reeh-Schlieder Property in Curved Spacetime

    Get PDF
    We attempt to prove the existence of Reeh-Schlieder states on curved spacetimes in the framework of locally covariant quantum field theory using the idea of spacetime deformation and assuming the existence of a Reeh-Schlieder state on a diffeomorphic (but not isometric) spacetime. We find that physically interesting states with a weak form of the Reeh-Schlieder property always exist and indicate their usefulness. Algebraic states satisfying the full Reeh-Schlieder property also exist, but are not guaranteed to be of physical interest.Comment: 13 pages, 2 figure

    Charged particle densities from Au+Au collisions at sqrt{s_{NN}}=130 GeV

    Full text link
    We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at sqrt{s_{NN}}=130 GeV. An integral charged particle multiplicity of 3860+/-300 is found for the 5% most central events within the pseudorapidity range -4.7 <= eta <= 4.7. At mid-rapidity an enhancement in the particle yields per participant nucleon pair is observed for central events. Near to the beam rapidity, a scaling of the particle yields consistent with the ``limiting fragmentation'' picture is observed. Our results are compared to other recent experimental and theoretical discussions of charged particle densities in ultra-relativistic heavy-ion collisions.Comment: 14 pages, 4 figures; to be published in Phys. Lett.
    corecore