25 research outputs found

    The use of social network analysis to describe the effect of immune activation on group dynamics in pigs

    Get PDF
    The immune system can influence social motivation with potentially dire consequences for group-housed production animals, such as pigs. The aim of this study was to test the effect of a controlled immune activation in group-housed pigs, through an injection with lipopolysaccharide (LPS) and an intervention with ketoprofen on centrality parameters at the individual level. In addition, we wanted to test the effect of time relative to the injection on general network parameters in order to get a better understanding of changes in social network structures at the group level. 52 female pigs (11-12 weeks) were allocated to four treatments, comprising two injections: ketoprofen-LPS (KL), ketoprofen-saline (KS), saline-LPS (SL) and saline-saline (SS). Social behaviour with a focus on damaging behaviour was observed continuously in 10 x 15 min bouts between 0800 am and 1700 pm 1 day before (baseline) and two subsequent days after injection. Activity was scan-sampled every 5 min for 6 h after the last injection in the pen. Saliva samples were taken for cortisol analysis at baseline and at 4, 24, 48, 72 h after the injections. A controlled immune activation affected centrality parameters for ear manipulation networks at the individual level. Lipopolysaccharide-injected pigs had a lower in-degree centrality, thus, received less interactions, 2 days after the challenge. Treatment effects on tail manipulation and fighting networks were not observed at the individual level. For networks of manipulation of other body parts, in-degree centrality was positively correlated with cortisol response at 4 h and lying behaviour in the first 6 h after the challenge in LPS-injected pigs. Thus, the stronger the pigs reacted to the LPS, the more interactions they received in the subsequent days. The time in relation to injection affected general network parameters for ear manipulation and fighting networks at the group level. For ear manipulation networks, in -degree centralisation was higher on the days following injection, thus, certain individuals in the pen received more interactions than the rest of the group compared to baseline. For fighting networks, betweenness decreased on the first day after injection compared to baseline, indicating that network connectivity increased after the challenge. Networks of tail manipulation and manipulation of other body parts did not change on the days after injection at the group level. Social network analysis is a method that can potentially provide important insights into the effects of sickness on social behaviour in group-housed pigs. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Histopathological Characterization of Tail Injury and Traumatic Neuroma Development after Tail Docking in Piglets

    Get PDF
    SummaryTail docking of neonatal pigs is widely used as a measure to reduce the incidence of tail biting, a complex management problem in the pig industry. Concerns exist over the long-term consequences of tail docking for possible tail stump pain sensitivity due to the development of traumatic neuromas in injured peripheral nerves. Tail stumps were obtained post mortem from four female pigs at each of 1, 4, 8 and 16 weeks following tail amputation (approximately two-thirds removed) by a gas-heated docking iron on post natal day 3. Tissues were processed routinely for histopathological examination. Non-neural inflammatory and reparative epidermal and dermal changes associated with tissue thickening and healing were observed 1 to 4 months after docking. Mild neutrophilic inflammation was present in some cases, although this and other degenerative and non-neural reparative changes are not likely to have caused pain. Traumatic neuroma and neuromatous tissue development was not observed 1 week after tail docking, but was evident 1 month after tail docking. Over time there was marked nerve sheath and axonal proliferation leading to the formation of neuromata, which were either localized and circumscribed or comprised of multiple axons dispersed within granulation tissue. Four months after tail resection, neuroma formation was still incomplete, with possible implications for sensitivity of the tail stump

    Physiological responses to low atmospheric pressure stunning and the implications for welfare

    Get PDF
    In low atmospheric pressure stunning (LAPS), poultry are rendered unconscious before slaughter by gradually reducing oxygen tension in the atmosphere to achieve a progressive anoxia. The effects of LAPS are not instantaneous, so there are legitimate welfare concerns around the experience of birds before loss of consciousness. Using self-contained telemetry logging units, high-quality continuous electroencephalogram (EEG) and electrocardiogram (EKG) recordings were obtained from 28 broiler chickens during exposure to LAPS in a commercial poultry processing plant. Application of LAPS was associated with changes in the EEG pattern in the form of increases in total power, decreases in mean frequency, and in particular, increases in slow-wave (delta) activity, indicating a gradual loss of consciousness. Increased delta wave activity was seen within 10 s of LAPS onset and consistently thereafter, peaking at 30 s into LAPS at which point the EEG signal shared characteristics with that of birds in a surgical plane of anesthesia. During LAPS, heart rate consistently decreased, with more pronounced bradycardia and arrhythmia observed after 30 s. No heart rate increases were observed in the period when the birds were potentially conscious. After an initial quiescent period, brief body movements (presumed to be ataxia/loss of posture) were seen on average at 39 s into the LAPS process. Later (after 120 s on average), artifacts related to clonic (wing flapping) and tonic (muscle spasms) convulsions were observed in the EKG recordings. Based on EEG analysis and body movement responses, a conservative estimate of time to loss of consciousness is approximately 40 s. The lack of behavioral responses indicating aversion or escape and absence of heart rate elevation in the conscious period strongly suggest that birds do not find LAPS induction distressing. Collectively, the results suggest that LAPS is a humane approach that has the potential to improve the welfare of poultry at slaughter by gradually inducing unconsciousness without distress, eliminating live shackling and ensuring every bird is adequately stunned before exansguination

    The effect of tail-docking neonate piglets on ATF-3 and NR2B immunoreactivity in coccygeal dorsal root ganglia and spinal cord dorsal horn neurons: preliminary data

    No full text
    Background/aims: Tail docking neonatal piglets remains a controversial animal welfare issue. Although banned in the UK, it is widely practiced in many countries as a safeguard against tail biting among pigs reared in intensive systems. Concerns exist whether tail docking can induce chronic pain in later life. This preliminary study examined the effects of partial tail amputation on activating transcription factor 3 (ATF3), a marker of peripheral nerve injury and regeneration and NMDA-glutamate receptor NR2B subunit which participates in the mediation of chronic pain. Methods: Procedures were performed according to the ethical guidelines for the study of experimental pain in animals. Six piglets (2-3 days old) were tail-docked (a portion of the tail amputated with sterile surgical cutters), six piglets (2-3 days old) were sham-docked. Three animals from each treatment were euthanised 7 and 56 days post-amputation. Coccygeal dorsal root ganglia (DRG) and spinal cord were collected post-mortem for immunohistochemistry. Results: ATF3 immunoreactivity (IR) was significantly increased (p <0.05) in the DRG neurons from tail-docked piglets 7 days after tail amputation, compared with sham-docked piglets. ATF3-IR was not different in sham and tail-docked piglets 56 days post amputation. NR2B-IR was significantly increased (p < 0.05) in dorsal horn neurons in tail-docked piglets compared with intact piglets 7 days after docking. There was no difference in NR2B-IR in neurons 56 days post amputation, compared with intact piglets. Conclusions: Increased ATF3 and NR2B-IR 7 days after tail-docking suggests that injury to the peripheral nerves in the tail was sufficient to trigger neuronal regeneration and altered dorsal horn signaling respectively, however the effects of tail-docking on neuronal regeneration and nociceptive signaling were relatively short lasting. Tail-docking neonatal piglets does not cause sustained changes in ATF3, which might suggest ongoing nerve fibre damage and NR2B which might be implicated in chronic pain

    Development of a mechanical stimulator and force measurement system for the assessment of nociceptive thresholds in pigs

    No full text
    A mechanical stimulator and force measurement system was developed to quantify withdrawal thresholds to noxious mechanical stimulation of the foot in young pigs. The device and associated PC software have design and control features not previously used in other mechanical stimulators. The device, capable of delivering stimulus rates between 2 and 17 mm/s, maximum force 27 N, was validated in a cross-over study on 8 juvenile pigs (6-8 weeks of age) to check the repeatability and reliability of force threshold measurement and assess its ability to measure changes in force threshold following an inflammatory challenge. Threshold force measurements were obtained over several time periods before and after the pigs received a 0.25 ml subcutaneous injection of 3% carrageenan in 0.01 M phosphate buffered saline (PBS) or PBS in the hind foot. Consistent withdrawal thresholds were measured in injected (ipsilateral) and contralateral feet, 24 h and 30 min prior to injection (mean 8.4: 95% CI 7.1-9.7 N). Carrageenan injection, but not PBS injection, induced a significant decrease in withdrawal thresholds 90 min after injection (4.6 +/- 0.9 N) which remained reduced for 6 h after injection. The testing system provided reliable and reproducible measurements of foot withdrawal thresholds to noxious mechanical force in young pigs (weight range 32-39 kg), and was capable of detecting and monitoring changes in threshold sensitivity following the induction of acute local inflammation in the foot. The system is suitable for studying nociceptive mechanisms in pigs

    Pre-natal stress amplifies the immediate behavioural responses to acute pain in piglets

    Get PDF
    Pre-natal stress (PNS) or undernutrition can have numerous effects on an individual's biology throughout their lifetime. Some of these effects may be adaptive by allowing individuals to tailor their phenotype to environmental conditions. Here we investigated, in the domestic pig Sus scrofa, whether one possible consequence of a predicted adverse environment could be altered pain perception. The behavioural response of piglets to the surgical amputation ('docking') of their tail or a sham procedure was measured for 1 min in piglets born to mothers who either experienced mid-gestation social stress or were left undisturbed throughout pregnancy. A behavioural pain score was found to predict the docked status of piglets with high discriminant accuracy. Piglets exposed to PNS had a significantly higher pain score than controls, and for each litter of tail-docked piglets, the average pain score was correlated with mid-gestation maternal cortisol levels. The data presented here provide evidence that the experience of stress in utero can result in a heightened acute response to injury in early life. Speculatively, this may represent an adaptive alteration occurring as a consequence of a pre-natal 'early warning' of environmental adversit
    corecore