12 research outputs found

    Assessment of marine geoid models by ship-borne GNSS profiles

    Get PDF
    Even though the entire Baltic Sea is included in previous geoid modelling projects such as the NKG2015 and EGG07, the accuracy of contemporary geoid models over marine areas remains unknown, presumably being offshore around 15–20 cm. An important part of the international cooperation project FAMOS (Finalising Surveys for the Baltic Motorways of the Sea) efforts is conducting new marine gravity observations for improving gravimetric quasigeoid modelling. New data is essential to the project as the existing gravimetric data over some regions of the Baltic Sea may be inaccurate and insufficiently scarce for the purpose of 5 cm accuracy geoid modelling. Therefore, it is important to evaluate geoid modelling outcome by independent data, for instance by shipborne GNSS measurements. Accordingly, this study presents results of the ship-borne marine gravity and GNSS campaign held on board the Estonian Maritime Administration survey vessel “Jakob Prei” in West-Estonian archipelago in June/July 2016. Emphasis of the study is on principles of using the GNSS profiles for validation of existing geoid models, post-processing of GNSS raw data and low-pass filtering of the GNSS results. Improvements in geoid modelling using new gravimetric data are also discussed. For example, accuracy of geoid models including the new marine gravity data increased 11 mm as assessed from GNSS profiles. It is concluded that the marine GNSS profiles have a potential in providing complementary constraints in problematic geoid modelling areas

    Geodetic SAR for Height System Unification and Sea Level Research—Observation Concept and Preliminary Results in the Baltic Sea

    Get PDF
    Traditionally, sea level is observed at tide gauge stations, which usually also serve as height reference stations for national leveling networks and therefore define a height system of a country. One of the main deficiencies to use tide gauge data for geodetic sea level research and height systems unification is that only a few stations are connected to the geometric network of a country by operating permanent GNSS receivers next to the tide gauge. As a new observation technique, absolute positioning by SAR using active transponders on ground can fill this gap by systematically observing time series of geometric heights at tide gauge stations. By additionally knowing the tide gauge geoid heights in a global height reference frame, one can finally obtain absolute sea level heights at each tide gauge. With this information the impact of climate change on the sea level can be quantified in an absolute manner and height systems can be connected across the oceans. First results from applying this technique at selected tide gauges at the Baltic coasts are promising but also exhibit some problems related to the new technique. The paper presents the concept of using the new observation type in an integrated sea level observing system and provides some early results for SAR positioning in the Baltic sea area

    Treatment of Tide Gauge Time Series and Marine GNSS Measurements for Vertical Land Motion with Relevance to the Implementation of the Baltic Sea Chart Datum 2000

    No full text
    Tide gauge (TG) time series and GNSS measurements have become standard datasets for various scientific and practical applications. However, the TG and geodetic networks in the Baltic Sea region are deforming due to vertical land motion (VLM), the primary cause of which is the glacial isostatic adjustment. Consequently, a correction for VLM, either obtained from a suitable VLM model or by utilizing space-geodetic techniques, must be applied to ensure compatibility of various data sources. It is common to consider the VLM rate relative to an arbitrary reference epoch, but this also yields that the resulting datasets may not be directly comparable. The common height reference, Baltic Sea Chart Datum 2000 (BSCD2000), has been initiated to facilitate the effective use of GNSS methods for accurate navigation and offshore surveying. The BSCD2000 agrees with the current national height realizations of the Baltic Sea countries. As TGs managed by national authorities are rigorously connected to the national height systems, the TG data can also be used in a common system. Hence, this contribution aims to review the treatment of TG time series for VLM and outline potential error sources for utilizing TG data relative to a common reference. Similar consideration is given for marine GNSS measurements that likewise require VLM correction for some marine applications (such as validating marine geoid models). The described principles are illustrated by analyzing and discussing numerical examples. These include investigations of TG time series and validation of shipborne GNSS determined sea surface heights. The latter employs a high-resolution geoid model and hydrodynamic model-based dynamic topography, which is linked to the height reference using VLM corrected TG data. Validation of the presented VLM corrected marine GNSS measurements yields a 1.7 cm standard deviation and −2.7 cm mean residual. The estimates are 1.9 cm and −10.2 cm, respectively, by neglecting VLM correction. The inclusion of VLM correction thus demonstrates significant improvement toward data consistency. Although the focus is on the Baltic Sea region, the principles described here are also applicable elsewhere

    The Influence of Bathymetry on Regional Marine Geoid Modeling in Northern Europe

    No full text
    Although Northern Europe has been the target area in many regionwide geoid determination studies, the research has been land-focused, neglecting bathymetry information. With new projects, such as the Baltic Sea Chart Datum 2000, the attention is shifting toward the marine geoid. Hence, consideration for bathymetry has become relevant, the influence of which is studied. In the relatively shallow Baltic Sea, accounting for bathymetry-based residual terrain model reduction during gravity data processing induces marine geoid modeling differences (relative to neglecting bathymetry) mainly within 2 cm. However, the models can deviate up to 3–4 cm in some regions. Rugged Norwegian coastal areas, on the other hand, had modeling improvements around a decimeter. Considering bathymetry may thus help improve geoid modeling outcomes in future Northern Europe geoid determination projects. Besides using the conventional precise GNSS-leveling control points, the paper also demonstrates the usefulness of shipborne GNSS and airborne laser scanning-derived geoidal heights in validating geoid modeling results. A total of 70 gravimetric geoid solutions are presented, for instance, by varying the used reference global geopotential models. According to the comparisons, GOCO05c-based solutions generally perform the best, where modeling agreement with GNSS-leveling control points reached 2.9 cm (standard deviation) from a one-dimensional fit

    Ehitustegevuse planeerimine ja järelevalve

    No full text

    Shipborne GNSS-Determined Sea Surface Heights Using Geoid Model and Realistic Dynamic Topography

    No full text
    With an increasing demand for accurate and reliable estimates of sea surface heights (SSH) from coastal and marine applications, approaches based on GNSS positioning have become favored, to bridge the gap between tide gauge (TG) and altimetry measurements in the coastal zone, and to complement offshore altimetry data. This study developed a complete methodology for jointly deriving and validating shipborne GNSS-determined SSH, using a geoid model and realistic dynamic topography estimates. An approach that combines the properties of hydrodynamic models and TG data was developed to obtain the latter. Tide gauge data allow estimating the spatiotemporal bias of a hydrodynamic model and, thus, linking it to the used vertical datums (e.g., a novel geoid-based Baltic Sea Chart Datum 2000). However, TG data may be erroneous and represent different conditions than offshore locations. The qualities of spatiotemporal bias are, hence, used to constrain TG data errors. Furthermore, a rigid system of four GNSS antennas was used to ensure SSH accuracy. Besides eliminating the vessel’s attitude effect on measurement data, the rigid system also provides a means for internal validation, suggesting a 4.1 cm height determination accuracy in terms of standard deviation. The methodology also involves eliminating the effect of sea state conditions via a low-pass filter and empirical estimation of vessel sailing-related corrections, such as the squat effect. The different data validation (e.g., examination of residual values and intersection analyses) results, ranging from 1.8 cm to 5.5 cm in terms of standard deviation, indicate an SSH determination accuracy of around 5 cm

    Treatment of Tide Gauge Time Series and Marine GNSS Measurements for Vertical Land Motion with Relevance to the Implementation of the Baltic Sea Chart Datum 2000

    No full text
    Tide gauge (TG) time series and GNSS measurements have become standard datasets for various scientific and practical applications. However, the TG and geodetic networks in the Baltic Sea region are deforming due to vertical land motion (VLM), the primary cause of which is the glacial isostatic adjustment. Consequently, a correction for VLM, either obtained from a suitable VLM model or by utilizing space-geodetic techniques, must be applied to ensure compatibility of various data sources. It is common to consider the VLM rate relative to an arbitrary reference epoch, but this also yields that the resulting datasets may not be directly comparable. The common height reference, Baltic Sea Chart Datum 2000 (BSCD2000), has been initiated to facilitate the effective use of GNSS methods for accurate navigation and offshore surveying. The BSCD2000 agrees with the current national height realizations of the Baltic Sea countries. As TGs managed by national authorities are rigorously connected to the national height systems, the TG data can also be used in a common system. Hence, this contribution aims to review the treatment of TG time series for VLM and outline potential error sources for utilizing TG data relative to a common reference. Similar consideration is given for marine GNSS measurements that likewise require VLM correction for some marine applications (such as validating marine geoid models). The described principles are illustrated by analyzing and discussing numerical examples. These include investigations of TG time series and validation of shipborne GNSS determined sea surface heights. The latter employs a high-resolution geoid model and hydrodynamic model-based dynamic topography, which is linked to the height reference using VLM corrected TG data. Validation of the presented VLM corrected marine GNSS measurements yields a 1.7 cm standard deviation and −2.7 cm mean residual. The estimates are 1.9 cm and −10.2 cm, respectively, by neglecting VLM correction. The inclusion of VLM correction thus demonstrates significant improvement toward data consistency. Although the focus is on the Baltic Sea region, the principles described here are also applicable elsewhere
    corecore