220 research outputs found
Macrophage activation syndrome in a patient with adult-onset Stillâs disease following first COVID-19 vaccination with BNT162b2
Background: Adult-onset Still's disease (AOSD) is an autoinflammatory multi-systemic syndrome. Macrophage activation syndrome (MAS) is a potentially life-threatening complication of AOSD with a mortality rate of 10-20%. Especially viral infection is thought to be a common trigger for development of MAS. On the other hand, the occurrence of MAS following vaccinations is extremely rare and has been described in a few cases after measles or influenza vaccinations and more recently after ChAdOx1 nCoV-19 (COVID-19 viral vector vaccine, Oxford-AZ).
Case presentation: We report the case of a twenty-year-old female with adult-onset Still's disease (AOSD), who developed a MAS six days after receiving her first COVID-19 vaccine dose of BNT162b2 (mRNA vaccine, BioNTech/Pfizer) with ferritin levels of 136,680 mu g/l (ref.: 13-150 mu g/l).
Conclusions: To the best of our knowledge, this is the first case report of development of MAS in a patient with preexisting AOSD after vaccination in general, and SARS-CoV-2 vaccination in particular. The new mRNA vaccines have generally shown a reassuring safety profile, but it has been shown that nucleic acids in general, including mRNA can act as pathogen-associated molecular patterns that activate toll-like receptors with extensive production of pro-inflammatory cytokines and further activation of immune cells. Proving an interferon 1 response in our patient directly after vaccination, we think that in this particular case the vaccination might have acted as trigger for the development of MAS. Even if it remains difficult to establish causality in the case of rare adverse events, especially in patients with autoimmune or autoinflammatory conditions, these complications are important to monitor and register, but do not at all diminish the overwhelming positive benefit-risk ratio of licensed COVID-19 vaccines
Clonal expansion of CD4+CD8+ T cells in an adult patient with Mycoplasma pneumoniae-associated Erythema multiforme majus
Background: Erythema multiforme (EM) is an acute, immune-mediated mucocutaneous disease, most often preceded by herpes simplex virus (HSV) infection or reactivation. Mycoplasma pneumoniae (Mp) is considered the second major trigger of EM and is often associated with an atypical and more severe presentation of disease, characterized by prominent mucosal involvement. However, contrary to HSV-associated Erythema multiforme (HAEM), immunological mechanisms of Mp-associated EM remain unclear.
Case presentation: We present the case of a 50-year-old male patient presenting with community-acquired pneumonia (CAP) and erythema multiforme majus (EMM). Acute Mp infection was diagnosed by seroconversion, with no evidence of HSV infection as a cause of EMM. We performed immune phenotyping of blister fluid (BF) and peripheral blood (PB) T cells and detected a clonally expanded TCRV beta 2(+) T cell population that was double positive for CD4 and CD8, and expressed the cytotoxic markers granulysin and perforin. This CD4(+)CD8(+) population comprised up to 50.7% of BF T cells and 24.9% of PB T cells. Two years prior to the onset of disease, the frequency of PB CD4(+)CD8(+)T cells had been within normal range and it gradually returned to baseline levels with the resolution of symptoms, suggesting an involvement of this population in EMM disease pathophysiology.
Conclusions: This report is the first to provide a phenotypic description of lesional T cells in Mp-associated EMM. Characterizing the local immune response might help to address pathophysiological questions and warrants further systematic research
Sociocognitive Predictors of Condom Use and Intentions Among Adolescents in Three Sub-Saharan Sites
Many HIV intervention programs in sub-Saharan Africa have applied social cognitive theories such as the theory of planned behavior. However, a recent sub-Saharan African review was unable to show increased effectiveness for theory-based interventions. This study assessed whether the predictive value of attitudes, subjective norms, self-efficacy, and intention was similar to studies in Europe and the U.S., and whether there were differences between three sub-Saharan sites. Longitudinal multigroup structural equation modeling was used to assess whether attitudes, subjective norms, and self-efficacy predicted condom use intentions and condom use (after 6 months) among adolescents in three sites, namely Cape Town (South Africa; N = 625), Dar es Salaam (Tanzania; N = 271), and Mankweng (South Africa; N = 404). Condom use intentions were predicted by subjective norms and self-efficacy in all three sites. Attitudes were not related to intentions in Dar es Salaam and were moderately related to intentions in Cape Town and Mankweng. The proportions of explained variance in intentions and behavior were decent (37â52 and 9â19 %, respectively). Although significant differences in predictive value were found between sites and in comparison to European and U.S. studies, intentions could adequately be explained by attitudes, subjective norms, and self-efficacy. However, the limited proportions of variance in behavior explained by intentions could signify the importance of contextual and environmental factors. Future studies are recommended to use an integrative approach that takes into account both individual and contextual factors, as well as social and environmental differences
NLRP3 protects alveolar barrier integrity by an inflammasome-independent increase of epithelial cell adherence
Bacterial pneumonia is a major cause of acute lung injury and acute
respiratory distress syndrome, characterized by alveolar barrier disruption.
NLRP3 is best known for its ability to form inflammasomes and to regulate IL-
1β and IL-18 production in myeloid cells. Here we show that NLRP3 protects the
integrity of the alveolar barrier in a mouse model of Streptococcus
pneumoniae-induced pneumonia, and ex vivo upon treatment of isolated perfused
and ventilated lungs with the purified bacterial toxin, pneumolysin. We reveal
that the preserving effect of NLRP3 on the lung barrier is independent of
inflammasomes, IL-1β and IL-18. NLRP3 improves the integrity of alveolar
epithelial cell monolayers by enhancing cellular adherence. Collectively, our
study uncovers a novel function of NLRP3 by demonstrating that it protects
epithelial barrier function independently of inflammasomes
Differential Role of gp130-Dependent STAT and Ras Signalling for Haematopoiesis Following Bone-Marrow Transplantation
INTRODUCTION: Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. METHODS: Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130(ÎMx)), or to selectively disrupt gp130-dependent Ras (gp130(ÎMxRas)) or STAT signalling (gp130(ÎMxSTAT)) in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. RESULTS: BM derived from gp130 deficient donor mice (gp130(ÎMx)) displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC), marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+) and CD8(+) T-cells, CD19(+) B-cells and CD11b(+) myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130(ÎMxRas) and gp130(ÎMxSTAT) donor BM. BMT of gp130(ÎMxSTAT) cells significantly impaired engraftment of CD4(+), CD8(+), CD19(+) and CD11b(+) cells, whereas gp130(ÎMxRas) BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. CONCLUSION: Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras-dependent pathways thereby exert distinct functions on individual bone-marrow-lineages
Disease Severity, Fever, Age, and Sex Correlate With SARS-CoV-2 Neutralizing Antibody Responses
Clinical trials on the use of COVID-19 convalescent plasma remain inconclusive. While data on safety is increasingly available, evidence for efficacy is still sparse. Subgroup analyses hint to a dose-response relationship between convalescent plasma neutralizing antibody levels and mortality. In particular, patients with primary and secondary antibody deficiency might benefit from this approach. However, testing of neutralizing antibodies is limited to specialized biosafety level 3 laboratories and is a time- and labor-intense procedure. In this single center study of 206 COVID-19 convalescent patients, clinical data, results of commercially available ELISA testing of SARS-CoV-2 spike-IgG and -IgA, and levels of neutralizing antibodies, determined by plaque reduction neutralization testing (PRNT), were analyzed. At a medium time point of 58 days after symptom onset, only 12.6% of potential plasma donors showed high levels of neutralizing antibodies (PRNT50 >= 1:320). Multivariable proportional odds logistic regression analysis revealed need for hospitalization due to COVID-19 (odds ratio 6.87; p-value 0.0004) and fever (odds ratio 3.00; p-value 0.0001) as leading factors affecting levels of SARS-CoV-2 neutralizing antibody titers in convalescent plasma donors. Using penalized estimation, a predictive proportional odds logistic regression model including the most important variables hospitalization, fever, age, sex, and anosmia or dysgeusia was developed. The predictive discrimination for PRNT50 >= 1:320 was reasonably good with AUC: 0.86 (with 95% CI: 0.79-0.92). Combining clinical and ELISA-based pre-screening, assessment of neutralizing antibodies could be spared in 75% of potential donors with a maximal loss of 10% of true positives (PRNT50 >= 1:320)
Promoting sexual and reproductive health among adolescents in southern and eastern Africa (PREPARE): project design and conceptual framework
Background: Young people in sub-Saharan Africa are affected by the HIV pandemic to a greater extent than young people elsewhere and effective HIV-preventive intervention programmes are urgently needed. The present article presents the rationale behind an EU-funded research project (PREPARE) examining effects of community-based (school delivered) interventions conducted in four sites in sub-Saharan Africa. One intervention focuses on changing beliefs and cognitions related to sexual practices (Mankweng, Limpopo, South Africa). Another promotes improved parent-offspring communication on sexuality (Kampala, Uganda). Two further interventions are more comprehensive aiming to promote healthy sexual practices. One of these (Western Cape, South Africa) also aims to reduce intimate partner violence while the other (Dar es Salaam, Tanzania) utilises school-based peer education. Methods/design: A modified Intervention Mapping approach is used to develop all programmes. Cluster randomised controlled trials of programmes delivered to school students aged 12â14 will be conducted in each study site. Schools will be randomly allocated (after matching or stratification) to intervention and delayed intervention arms. Baseline surveys at each site are followed by interventions and then by one (Kampala and Limpopo) or two (Western Cape and Dar es Salaam) post-intervention data collections. Questionnaires include questions common for all sites and are partly based on a set of social cognition models previously applied to the study of HIV-preventive behaviours. Data from all sites will be merged in order to compare prevalence and associations across sites on core variables. Power is set to .80 or higher and significance level to .05 or lower in order to detect intervention effects. Intraclass correlations will be estimated from previous surveys carried out at each site. Discussion: We expect PREPARE interventions to have an impact on hypothesized determinants of risky sexual behaviour and in Western Cape and Dar es Salaam to change sexual practices. Results from PREPARE will (i) identify modifiable cognitions and social processes related to risky sexual behaviour and (ii) identify promising intervention approaches among young adolescents in sub-Saharan cultures and contexts.publishedVersionPeer Reviewe
The human host response to monkeypox infection: a proteomic case series study
The rapid rise of monkeypox (MPX) cases outside previously endemic areas prompts for a better understanding of the disease. We studied the plasma proteome of a group of MPX patients with a similar infection history and clinical manifestation typical for the current outbreak. We report that MPX in this case series is associated with a strong plasma proteomic response among nutritional and acute phase response proteins. Moreover, we report a correlation between plasma proteins and disease severity. Contrasting the MPX host response with that of COVIDâ19, we find a range of similarities, but also important differences. For instance, CFHR1 is induced in COVIDâ19, but suppressed in MPX, reflecting the different roles of the complement system in the two infectious diseases. Of note, the spatial overlap in response proteins suggested that a COVIDâ19 biomarker panel assay could be repurposed for MPX. Applying a targeted protein panel assay provided encouraging results and distinguished MPX cases from healthy controls. Hence, our results provide a first proteomic characterization of the MPX human host response and encourage further research on proteinâpanel assays in emerging infectious diseases
SARS-CoV-2 Proteome-Wide Analysis Revealed Significant Epitope Signatures in COVID-19 Patients
The WHO declared the COVID-19 outbreak a public health emergency of international concern. The causative agent of this acute respiratory disease is a newly emerged coronavirus, named SARS-CoV-2, which originated in China in late 2019. Exposure to SARS-CoV-2 leads to multifaceted disease outcomes from asymptomatic infection to severe pneumonia, acute respiratory distress and potentially death. Understanding the host immune response is crucial for the development of interventional strategies. Humoral responses play an important role in defending viral infections and are therefore of particular interest. With the aim to resolve SARS-CoV-2-specific humoral immune responses at the epitope level, we screened clinically well-characterized sera from COVID-19 patients with mild and severe disease outcome using high-density peptide microarrays covering the entire proteome of SARS-CoV-2. Moreover, we determined the longevity of epitope-specific antibody responses in a longitudinal approach. Here we present IgG and IgA-specific epitope signatures from COVID-19 patients, which may serve as discriminating prognostic or predictive markers for disease outcome and/or could be relevant for intervention strategies
Deciphering the Role of Humoral and Cellular Immune Responses in Different COVID-19 Vaccines - A Comparison of Vaccine Candidate Genes in Roborovski Dwarf Hamsters
With the exception of inactivated vaccines, all SARS-CoV-2 vaccines currently used for clinical application focus on the spike envelope glycoprotein as a virus-specific antigen. Compared to other SARS-CoV-2 genes, mutations in the spike protein gene are more rapidly selected and spread within the population, which carries the risk of impairing the efficacy of spike-based vaccines. It is unclear to what extent the loss of neutralizing antibody epitopes can be compensated by cellular immune responses, and whether the use of other SARS-CoV-2 antigens might cause a more diverse immune response and better long-term protection, particularly in light of the continued evolution towards new SARS-CoV-2 variants. To address this question, we explored immunogenicity and protective effects of adenoviral vectors encoding either the full-length spike protein (S), the nucleocapsid protein (N), the receptor binding domain (RBD) or a hybrid construct of RBD and the membrane protein (M) in a highly susceptible COVID-19 hamster model. All adenoviral vaccines provided life-saving protection against SARS-CoV-2-infection. The most efficient protection was achieved after exposure to full-length spike. However, the nucleocapsid protein, which triggered a robust T-cell response but did not facilitate the formation of neutralizing antibodies, controlled early virus replication efficiently and prevented severe pneumonia. Although the full-length spike protein is an excellent target for vaccines, it does not appear to be the only option for future vaccine design
- âŚ