244 research outputs found
Impact of 24-hour Postural Care in Management of Scoliosis, Windswept Deformity, Hip Dislocation, and Subluxation in Children with Cerebral Palsy: A Literature Review
Cerebral Palsy (CP) describes various challenges with movement and coordination caused by early brain damage which does not progress with age. CP is a lifelong condition and is usually associated with secondary complications across the lifespan. This review aims to explore the impact of twenty-four-hour postural care in prevention and management of secondary complications such as scoliosis, windswept deformity and hip dislocation or subluxation in children with cerebral palsy. The studies published between 2014 and 2025, in English language in databases PubMed and Google Scholar were included. 19 studies were reviewed which indicated use of postural care and control in preventing subsequent issues such as hip dislocation, contractures, windswept deformities, and scoliosis. Supported standing, weight-bearing exercises, and neurodevelopmental treatment were among the interventions that have been shown to increase comfort, involvement, and caring ease. Postural management has been shown to improve alignment, decrease hip migration, and thereby increase functional independence. While proactive and early postural control is encouraging overall, more research is needed to determine how best to use it and what will be its long-term effects. There seems to be a lacunae of information regarding use of 24 hour postural care in preventing complications in children with CP, what protocol to follow and addressing the most vulnerable CP children with severe motor deficits. A key component of long-term postural care will also be incorporating caregiver education and adjustments to everyday routines. All measures and ways which can help to prevent or prolong the incidence of secondary complications in individuals with CP are supposed to have a positive impact on the life of individuals and their family
COVID-19–Related Glomerulopathy: A Report of 2 Cases of Collapsing Focal Segmental Glomerulosclerosis
Coronavirus disease 19 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been associated with acute kidney injury, presumably due to acute tubular injury. However, this does not explain proteinuria, sometimes severe, and hematuria often observed. We present 2 African American patients with glomerulopathy demonstrated by kidney biopsy in the setting of acute kidney injury and COVID-19 infection. Kidney biopsy specimens showed a collapsing variant of focal segmental glomerulosclerosis in addition to acute tubular injury. Both patients were homozygous for apolipoprotein L1 (APOL1). COVID-19 infection likely caused the interferon surge as a second hit causing podocyte injury leading to collapsing focal segmental glomerulosclerosis. APOL1 testing should be strongly considered in African American patients with nephrotic-range proteinuria. More data from future kidney biopsies will further elucidate the pathology of kidney injury and glomerular involvement from COVID-19 infections
Electric injury: a case series
In the modern era, electricity acts as a vital zone for mankind. The most important external sign of electrocution is the electric mark. The internal findings of electrocution are usually unspecific. The electric mark can also be of postmortem origin and is therefore not a reliable proof that the electric shock occurred before death, unless the survival time was long enough for an inflammatory response of the affected tissue. Various cases of electrocution have been reported in literature but as per the best of authors knowledge none of them have been clearly explained for the establishment of complete electric circuit in reported cases; required for fatal electrocution. In the present case series, authors’ report and discuss the three cases of electrocution under different circumstances with deviations in expectations. Because of the diagnostic problems authors also discuss the significance and careful evaluation of incident/death scene in all definitive as well as suspected cases of electrocution and emphasize on various components required for complete electric circuit for flow of current
Research on fan vibration fault diagnosis based on image recognition
The conventional methods for vibration fault detection and diagnosis relies on feature extraction from the waveforms of the vibration signals. This article exploits the scope of image recognition application for the detection and diagnosis of fan vibration faults. In this paper, a novel image recognition technique is proposed for vibration-based fault diagnosis using the spectrum images of the vibration signals. 1D vibration signal spectrum is initially computed using Fast Fourier Transform (FFT) and the FFT frequencies are adjusted such that it captures a vibration spectrum diagram as 2D image representation. FFT based vibration analysis is done and the image recognition concept is utilized for feature extraction and a machine learning classification module is used for fault analysis and diagnosis. Effective feature generation is done using Principal Component Analysis (PCA) by removing the redundancy from the feature vectors and machine learning classifiers are used to obtain improved image recognition and classification performance. Artificial Neural Network (ANN) classifier yields better performance in terms of various performance parameters and percentage improvement in terms of accuracy for ANN classification methods over Support Vector Machine (SVM), k-Nearest Neighbours (kNN) and Random Forest Ensemble (RFE) methods are 10.01 %, 4.51 % and 2.01 % respectively. Comparative scenarios are considered in this work for fan vibration fault detection as well as diagnosis based on the image features for various realistic vibration fault conditions. Effectiveness of the proposed image recognition-based technique is compared with the state-of-the-art methods, justifying its outperformance for fan fault detection and diagnosis using the combination of spectrum adjustment, PCA and ANN classification method
Understanding the role of radiologists in complex treatment decisions for patients with hepatocellular carcinoma.
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver and represents a significant global health burden. Management of HCC can be challenging due to multiple factors, including variable expectations for treatment outcomes. Several treatment options are available, each with specific eligibility and ineligibility criteria, and are provided by a multidisciplinary team of specialists. Radiologists should be aware of the types of treatment options available, as well as the criteria guiding the development of individualized treatment plans. This awareness enables radiologists to contribute effectively to patient-centered multidisciplinary tumor boards for HCC and play a central role in reassessing care plans when the treatment response is deemed inadequate. This comprehensive review aims to equip radiologists with an overview of HCC staging systems, treatment options, and eligibility criteria. The review also discusses the significance of imaging in HCC diagnosis, treatment planning, and monitoring treatment response. Furthermore, we highlight the crucial branch points in the treatment decision-making process that depend on radiological interpretation
Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility
Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes
Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks
DNA double-strand break (DSB) repair via the homologous recombination pathway is a multi-stage process, which results in repair of the DSB without loss of genetic information or fidelity. One essential step in this process is the generation of extended single-stranded DNA (ssDNA) regions at the break site. This ssDNA serves to induce cell cycle checkpoints and is required for Rad51 mediated strand invasion of the sister chromatid. Here, we show that human Exonuclease 1 (Exo1) is required for the normal repair of DSBs by HR. Cells depleted of Exo1 show chromosomal instability and hypersensitivity to ionising radiation (IR) exposure. We find that Exo1 accumulates rapidly at DSBs and is required for the recruitment of RPA and Rad51 to sites of DSBs, suggesting a role for Exo1 in ssDNA generation. Interestingly, the phosphorylation of Exo1 by ATM appears to regulate the activity of Exo1 following resection, allowing optimal Rad51 loading and the completion of HR repair. These data establish a role for Exo1 in resection of DSBs in human cells, highlighting the critical requirement of Exo1 for DSB repair via HR and thus the maintenance of genomic stability
Vasospasm in children with traumatic brain injury
To determine the incidence of vasospasm in children who have suffered moderate to severe traumatic brain injury.
A prospective observational pilot study in a 24-bed pediatric intensive care unit was performed. Twenty-two children aged 7 months to 14 years with moderate to severe traumatic brain injury as indicated by Glasgow Coma Score ≤12 and abnormal head imaging were enrolled. Transcranial Doppler ultrasound was performed to identify and follow vasospasm. Patients with a flow velocity in the middle cerebral artery (MCA) >120 cm/s were considered to have vasospasm by criterion A. If flow velocity in the MCA was >120 cm/s and the Lindegaard ratio was >3, vasospasm was considered to be present by criterion B. Patients with basilar artery (BA) flow velocity >90 cm/s met criteria for vasospasm in the posterior circulation (criterion C).
In the MCA, 45.5% of patients developed vasospasm based on criterion A and 36.3% developed vasospasm based on criterion B. A total of 18.2% of patients developed vasospasm in the BA by criterion C. Typical day of onset of vasospasm was hospital day 2–3. Duration of vasospasm in the anterior circulation was 4 ± 2 days based on criteria A and 3 ± 1 days based on criteria B. Vasospasm in the posterior circulation persisted for 2 ± 1 days.
Using the adult criteria outlined above to diagnose vasospasm, a significant proportion of pediatric patients who have suffered moderate to severe traumatic brain injury develop vasospasm during the course of their treatment
The Relation between Firm-Level Corporate Governance and Market Value: A Study of India
- …
