1,619 research outputs found

    Characterizing the Heterogeneity of the OpenStreetMap Data and Community

    Full text link
    OpenStreetMap (OSM) constitutes an unprecedented, free, geographic information source contributed by millions of individuals, resulting in a database of great volume and heterogeneity. In this study, we characterize the heterogeneity of the entire OSM database and historical archive in the context of big data. We consider all users, geographic elements, and user contributions from an eight-year data archive, at a size of 692 GB. We rely on some nonlinear methods such as power-law statistics and head/tail breaks to uncover and illustrate the underlying scaling properties. All three aspects (users, elements, and contributions) demonstrate striking power laws or heavy-tailed distributions. The heavy-tailed distributions imply that there are far more small elements than large ones, far more inactive users than active ones, and far more lightly edited elements than heavily edited ones. Furthermore, about 500 users in the core group of the OSM are highly networked in terms of collaboration. Keywords: OpenStreetMap, big data, power laws, head/tail breaks, ht-indexComment: 13 pages, 6 figures, and 8 table

    Motives for choosing growth-enhancing hormone treatment in adolescents with idiopathic short stature: a questionnaire and structured interview study

    Get PDF
    Background Growth-enhancing hormone treatment is considered a possible intervention in short but otherwise healthy adolescents. Although height gain is an obvious measure for evaluating hormone treatment, this may not be the ultimate goal for the person, but rather a means to reach other goals such as the amelioration of current height-related psychosocial problems or the enhancement of future prospects in life and society. The aim of our study was to clarify the motives of adolescents and their parents when choosing to participate in a growth-enhancing trial combining growth hormone and puberty-delaying hormone treatment. Methods Participants were early pubertal adolescents (25 girls, 13 boys) aged from 11 to 13 years (mean age 11.5 years) with a height standard deviation score (SDS) ranging from -1.03 to -3.43. All had been classified as idiopathic short stature or persistent short stature born small for the gestational age (intrauterine growth retardation) on the basis of a height SDS below -2, or had a height SDS between -1 and -2 and a predicted adult height SDS below -2. The adolescents and their parents completed questionnaires and a structured interview on the presence of height-related stressors, parental worries about their child's behavior and future prospects, problems in psychosocial functioning, and treatment expectations. Questionnaire scores were compared to norms of the general Dutch population. Results The adolescents reported normal psychosocial functioning and highly positive expectations of the treatment in terms of height gain, whereas the parents reported that their children encountered some behavioral problems (being anxious/depressed, and social and attention problems) and height-related stressors (being teased and juvenilized). About 40% of the parents were worried about their children's future prospects for finding a spouse or job. The motives of the adolescents and their parents exhibited rather different profiles. The most prevalent parental worries related to the current or future functioning of their children, while a few cases were characterized by no observed motives or by psychosocial problems only reported by the adolescents themselves. Conclusion The motives for participating in a growth-enhancing hormone trial are more obvious in the parents than in the adolescents themselves. Two out of three parents report worries about the future opportunities or observe modest current psychosocial problems in their children. The adolescents want to gain height, but the motivation underlying this remains unclear. Few of the adolescents experience psychosocial problems. Our analyses revealed differences among individuals in terms of motives, which implies that in an evaluation of hormone treatment, the importance of divergent outcome variables will also differ among individuals. Effectiveness evaluations of hormone treatment to increase height and the consequential fulfillment of other goals must be awaited

    An Investigation of the Role of Macular Pigment in Attenuating Photostress through Comparison between Blue and Green Photostress Recovery Times

    Get PDF
    Purpose: Photostress recovery time (PSRT) is the time required for the macula to return to its normal functioning after the bleaching of cone photopigments due to light exposure, usually white. This work investigates the role of macular pigment (MP) as an optical filter that attenuates photostress by analyses of PSRT at different wavelengths. Methods: Thirty-nine subjects (19–28 years) were exposed to blue/green photostress varying in irradiance. During photostress, pupil constriction (Cp) was measured. Twenty-seven subjects (20–27 years) were exposed to white photostress. After 25 s of photostress, the time (PSRT) required to read correctly a 0.2 logMAR letter was measured. Correlation was studied between PSRT, CP, and irradiance. Statistical significance of differences between PSRTs was evaluated at Log(irradiance(quanta s−1 cm−2)) = 14 by Student’s t statistics. Results: Cp and PSRT were found linearly correlated to Log(irradiance) for blue, green, and white. At Log(irradiance(quanta s−1 cm−2)) = 14, blue and green mean PSRTs resulted different (p 0.05). Conclusions: MP plays the role of an optical filter attenuating photostress. PSRT was substantially proportional to the number of incident photons corrected for the MP optical absorption, regardless of their wavelength

    Model reduction in the back step fluid–thermal problem with variable geometry

    Get PDF
    A methodology is presented to undertake the development of reduced-order models (ROMs) in variable geometry fluid–thermal problems using the method of snapshots. First, some snapshots are calculated in computational domains that vary in both shape and number of grid points. These snapshots are projected onto a so-called virtual grid (defined in a virtual geometry) using a smooth transformation. Proper orthogonal decomposition (POD) modes are obtained from the associated virtual snapshots and projected back onto the original grids, where they are used to define expansions of the flow variables. The associated POD mode amplitudes are obtained minimizing a residual, which is calculated in terms of the reconstructed solution. POD modes are calculated using only a part of the computational domain, which will be called the projection window, and the residual is defined using only a limited number of points of the computational domain. This methodology is illustrated addressing the problem of heat transfer downstream of a backward facing step in the 2-D steady, laminar regime, with three free parameters, namely the Reynolds number, the wall temperature, and the step height

    Three-dimensional structure determination from a single view

    Full text link
    The ability to determine the structure of matter in three dimensions has profoundly advanced our understanding of nature. Traditionally, the most widely used schemes for 3D structure determination of an object are implemented by acquiring multiple measurements over various sample orientations, as in the case of crystallography and tomography (1,2), or by scanning a series of thin sections through the sample, as in confocal microscopy (3). Here we present a 3D imaging modality, termed ankylography (derived from the Greek words ankylos meaning 'curved' and graphein meaning 'writing'), which enables complete 3D structure determination from a single exposure using a monochromatic incident beam. We demonstrate that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirm the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 Angstrom resolution and a single poliovirus at 2 - 3 nm resolution from 2D spherical diffraction patterns alone. Using diffraction data from a soft X-ray laser, we demonstrate that ankylography is experimentally feasible by obtaining a 3D image of a test object from a single 2D diffraction pattern. This approach of obtaining complete 3D structure information from a single view is anticipated to find broad applications in the physical and life sciences. As X-ray free electron lasers (X-FEL) and other coherent X-ray sources are under rapid development worldwide, ankylography potentially opens a door to determining the 3D structure of a biological specimen in a single pulse and allowing for time-resolved 3D structure determination of disordered materials.Comment: 30 page

    Effect of farnesol on structure and composition of staphylococcus epidermidis biofilm matrix

    Get PDF
    Staphylococcus epidermidis is the most frequent cause of nosocomial sepsis and catheter-related infections in which biofilm formation is considered to be one of the main virulence mechanisms. Moreover, their increased resistance to conventional antibiotic therapy enhances the need to develop new therapeutical agents. Farnesol, a natural sesquiterpenoid present in many essential oils, has been described as impairing bacterial growth. The aim of this study was to evaluate the effect of farnesol on the structure and composition of biofilm matrix of S. epidermidis. Biofilms formed in the presence of farnesol (300 μM) contained less biomass, and displayed notable changes in the composition of the biofilm matrix. Changes in the spacial structure were also verified by confocal scanning laser microscopy (CSLM). The results obtained by the quantification of extracellular polymers and by wheat germ agglutinin (WGA) fluorescent detection of glycoproteins containing β(1→4)-N-acetyl-d-glucosamine support the hypothesis that farnesol causes disruption of the cytoplasmic membrane and consequently release of cellular content.Fernanda Gomes and Pilar Teixeira fully acknowledge the financial support of Fundacao para a Ciencia e Tecnologia (FCT) through the grants SFRH/BD/32126/2006 and SFRH/BPD/26803/2006, respectively

    A detailed clinical and molecular survey of subjects with nonsyndromic USH2A retinopathy reveals an allelic hierarchy of disease-causing variants.

    Get PDF
    Defects in USH2A cause both isolated retinal disease and Usher syndrome (ie, retinal disease and deafness). To gain insights into isolated/nonsyndromic USH2A retinopathy, we screened USH2A in 186 probands with recessive retinal disease and no hearing complaint in childhood (discovery cohort) and in 84 probands with recessive retinal disease (replication cohort). Detailed phenotyping, including retinal imaging and audiological assessment, was performed in individuals with two likely disease-causing USH2A variants. Further genetic testing, including screening for a deep-intronic disease-causing variant and large deletions/duplications, was performed in those with one likely disease-causing change. Overall, 23 of 186 probands (discovery cohort) were found to harbour two likely disease-causing variants in USH2A. Some of these variants were predominantly associated with nonsyndromic retinal degeneration ('retinal disease-specific'); these included the common c.2276 G>T, p.(Cys759Phe) mutation and five additional variants: c.2802 T>G, p.(Cys934Trp); c.10073 G>A, p.(Cys3358Tyr); c.11156 G>A, p.(Arg3719His); c.12295-3 T>A; and c.12575 G>A, p.(Arg4192His). An allelic hierarchy was observed in the discovery cohort and confirmed in the replication cohort. In nonsyndromic USH2A disease, retinopathy was consistent with retinitis pigmentosa and the audiological phenotype was variable. USH2A retinopathy is a common cause of nonsyndromic recessive retinal degeneration and has a different mutational spectrum to that observed in Usher syndrome. The following model is proposed: the presence of at least one 'retinal disease-specific' USH2A allele in a patient with USH2A-related disease results in the preservation of normal hearing. Careful genotype-phenotype studies such as this will become increasingly important, especially now that high-throughput sequencing is widely used in the clinical setting.European Journal of Human Genetics advance online publication, 4 February 2015; doi:10.1038/ejhg.2014.283

    Intra- and inter-individual genetic differences in gene expression

    Get PDF
    Genetic variation is known to influence the amount of mRNA produced by a gene. Given that the molecular machines control mRNA levels of multiple genes, we expect genetic variation in the components of these machines would influence multiple genes in a similar fashion. In this study we show that this assumption is correct by using correlation of mRNA levels measured independently in the brain, kidney or liver of multiple, genetically typed, mice strains to detect shared genetic influences. These correlating groups of genes (CGG) have collective properties that account for 40-90% of the variability of their constituent genes and in some cases, but not all, contain genes encoding functionally related proteins. Critically, we show that the genetic influences are essentially tissue specific and consequently the same genetic variations in the one animal may up-regulate a CGG in one tissue but down-regulate the same CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. The implication of this study is that this class of genetic variation can result in complex inter- and intra-individual and tissue differences and that this will create substantial challenges to the investigation of phenotypic outcomes, particularly in humans where multiple tissues are not readily available.

&#xa
    corecore