137 research outputs found
Energy recovery from vinery waste: Dust explosion issues
The concern about global warming issues and their consequences is more relevant than ever, and the H2020 objectives promoted by the EU are oriented towards generating climate actions and sustainable development. The energy sector constitutes a difficult challenge as it plays a key role in the global warming impact. Its decarbonization is a crucial factor, and significant efforts are needed to find efficient alternatives to fossil fuels in heating/electricity generation. The biomass energy industry could have a contribution to make in the shift to renewable sources; the quest for a suitable material is basically focused on the energy amount that it stores, its availability, logistical considerations, and safety issues. This work deals with the characterization of a wine-waste dust sample, in terms of its chemical composition, fire behavior, and explosion violence. This material could be efficiently used in energy generation (via direct burning as pellets), but scarce information is present in terms of the fire and explosion hazards when it is pulverized. In the following, the material is analyzed through different techniques in order to clearly understand its ignition sensitivity and fire effects; accelerating aging treatment is also used to simulate the sample storage life and determine the ways in which this affects its flammability and likelihood of explosion
Biomass from winery waste: Evaluation of dust explosion hazards
Food and drink supply chains have significant environmental impacts due to their use of resources, emissions, and waste production. An efficient method to reduce this impact is the valorisation of biomass waste through energy recovery by using it as a source of heat. The European energy system faces several fundamental challenges being currently the largest emitter of greenhouse gases due to its large dependence on fossil fuels (mostly natural gas). Therefore, the energy sector's decarbonization will play a central role in achieving a climateneutral economy in Europe. Identifying the suitable material for biofuel is basically focused on the amount of energy that the material stores, availability, and logistic considerations. Sawdust and wood chips have been extensively used as biofuel in recent years, but other promising raw and waste materials could be adopted (with the positive effect of reducing the impact on forestry soil and the food chain). Novel materials bring consequently novel challenges, also regarding their safe use. As an example, a relevant waste flow is produced from wine manufacturing. A solid with high moisture content is obtained from grapes pressing, and it could be reused to produce distillates. The obtained exhausted pomace could be considered among the materials potentially involved in energy recovery. It is also carrying dust explosion hazard, as solid residues could be present in the form of coarse and fine powders. In this work, grape pomace is examined: its explosion safety-related properties are evaluated to define the severity of events in which this material could be ignited. Minimum Ignition Energy (MIE), explosion pressure peak (Pmax), deflagration severity index (KSt), autoignition temperature (MIT), and Volatile Point (VP) are measured according to standard procedures. This material's thermal susceptibility and ignition sensitivity are studied and compared with biomasses from different sources (ligneo-cellulosic and herbaceous)
Regional patterns of U.S. household carbon emissions
Market-based policies to address fossil fuel-related externalities including climate change typically operate by raising the price of those fuels. Increases in energy prices have important consequences for a typical U.S. household that spent almost 10 per ton tax on carbon dioxide (ignoring behavioral response). We find substantial variation: incidence from the tax range from 235 per year per household in Tensas Parish, Louisiana. This variation can be explained by differences in energy use, carbon intensity of electricity generation, and electricity regulation
Connections between Classical and Parametric Network Entropies
This paper explores relationships between classical and parametric measures of graph (or network) complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity
Recommended from our members
Optimal siting, sizing, and enforcement of marine protected areas
The design of protected areas, whether marine or terrestrial, rarely considers how people respond to the imposition of no-take sites with complete or incomplete enforcement. Consequently, these protected areas may fail to achieve their intended goal. We present and solve a spatial bio-economic model in which a manager chooses the optimal location, size, and enforcement level of a marine protected area (MPA). This manager acts as a Stackelberg leader, and her choices consider villagers’ best response to the MPA in a spatial Nash equilibrium of fishing site and effort decisions. Relevant to lower income country settings but general to other settings, we incorporate limited enforcement budgets, distance costs of traveling to fishing sites, and labor allocation to onshore wage opportunities. The optimal MPA varies markedly across alternative manager goals and budget sizes, but always induce changes in villagers’ decisions as a function of distance, dispersal, and wage. We consider MPA managers with ecological conservation goals and with economic goals, and identify the shortcomings of several common manager decision rules, including those focused on: (1) fishery outcomes rather than broader economic goals, (2) fish stocks at MPA sites rather than across the full marinescape, (3) absolute levels rather than additional values, and (4) costless enforcement. Our results demonstrate that such naïve or overly narrow decision rules can lead to inefficient MPA designs that miss economic and conservation opportunities
Spatial resource wars: A two region example
We develop a spatial resource model in continuous time in which two agents strategically
exploit a mobile resource in a two-location setup. In order to contrast the overexploitation of
the resource (the tragedy of commons) that occurs when the player are free to choose where to
fish/hunt/extract/harvest, the regulator can establish a series of spatially structured policies.
We compare the three situations in which the regulator: (a) leaves the player free to choose
where to harvest; (b) establishes a natural reserve where nobody is allowed to harvest; (c)
assigns to each player a specific exclusive location to hunt. We show that when preference
parameters dictate a low harvesting intensity, the policies cannot mitigate the overexploitation
and in addition they worsen the utilities of the players. Conversely, in a context of harsher
harvesting intensity, the intervention can help to safeguard the resource, preventing the
extinction and also improving the welfare of both players
- …