7 research outputs found

    Efficacy of the filmarray blood culture identification panel for direct molecular diagnosis of infectious diseases from samples other than blood

    Get PDF
    Molecular-based techniques reduce the delay in diagnosing infectious diseases and therefore contribute to better patient outcomes. We assessed the FilmArray blood culture identification (BCID) panel (Biofire Diagnostics/bioMérieux) directly on clinical specimens other than blood: cerebrospinal, joint, pleural and ascitic fluids, bronchoscopy samples and abscesses. We compared the results from 88 samples obtained by culture-based techniques. The percentage of agreement between the two methods was 75 % with a Cohen K value of 0.51. Global sensitivity and specificity using the FilmArray BCID panel were 71 and 97 %, respectively. Sensitivity was poorer in samples with a low bacterial load, such as ascitic and pleural fluids (25 %), whereas the sensitivity for abscess samples was high (89 %). These findings suggest that the FilmArray BCID panel could be useful to perform microbiological diagnosis directly from samples other than positive blood cultures, as it offers acceptable sensitivity and moderate agreement with conventional microbiological methods. Nevertheless, cost-benefit studies should be performed before introducing this method into algorithms for microbiological diagnostics

    Reduced airway levels of fatty-acid binding protein 4 in COPD: relationship with airway infection and disease severity

    Get PDF
    Background: For still unclear reasons, chronic airway infection often occurs in patients with Chronic Obstructive Pulmonary Disease (COPD), particularly in those with more severe airflow limitation. Fatty-acid binding protein 4 (FABP4) is an adipokine involved in the innate immune response against infection produced by alveolar macrophages (Mɸ). We hypothesized that airway levels of FABP4 may be altered in COPD patients with chronic airway infection. Methods: In this prospective and controlled study we: (1) compared airway FABP4 levels (ELISA) in induced sputum, bronchoalveolar lavage fluid (BALF) and plasma samples in 52 clinically stable COPD patients (65.2 ± 7.9 years, FEV1 59 ± 16% predicted) and 29 healthy volunteers (55.0 ± 12.3 years, FEV1 97 ± 16% predicted); (2) explored their relationship with the presence of bacterial airway infection, defined by the presence of potentially pathogenic bacteria (PPB) at ≥103 colony-forming units/ml in BALF; (3) investigated their relationship with the quantity and proportion of Mɸ in BALF (flow cytometry); and, (4) studied their relationship with the severity of airflow limitation (FEV1), GOLD grade and level of symptoms (CAT questionnaire). Results: We found that: (1) airway levels of FABP4 (but not plasma ones) were reduced in COPD patients vs. controls [219.2 (96.0-319.6) vs. 273.4 (203.1-426.7) (pg/ml)/protein, p = 0.03 in BALF]; (2) COPD patients with airway infection had lower sputum FABP4 levels [0.73 (0.35-15.3) vs. 15.6 (2.0-29.4) ng/ml, p = 0.02]; (3) in COPD patients, the number and proportion of Mɸ were positively related with FABP4 levels in BALF; (4) BALF and sputum FABP4 levels were positively related with FEV1, negatively with the CAT score, and lowest in GOLD grade D patients. Conclusions: Airway FABP4 levels are reduced in COPD patients, especially in those with airway infection and more severe disease. The relationship observed between Mɸ and airway FABP4 levels supports a role for FABP4 in the pathogenesis of airway infection and disease severity in COPD

    Reduced airway levels of fatty-acid binding protein 4 in COPD : relationship with airway infection and disease severity

    No full text
    Altres ajuts: This study is supported by Fundació Ramon Pla i Armengol. RF is recipient of a MS research contract (CP16/000039). OS is supported by PERIS.For still unclear reasons, chronic airway infection often occurs in patients with Chronic Obstructive Pulmonary Disease (COPD), particularly in those with more severe airflow limitation. Fatty-acid binding protein 4 (FABP4) is an adipokine involved in the innate immune response against infection produced by alveolar macrophages (Mɸ). We hypothesized that airway levels of FABP4 may be altered in COPD patients with chronic airway infection. In this prospective and controlled study we: (1) compared airway FABP4 levels (ELISA) in induced sputum, bronchoalveolar lavage fluid (BALF) and plasma samples in 52 clinically stable COPD patients (65.2 ± 7.9 years, FEV 59 ± 16% predicted) and 29 healthy volunteers (55.0 ± 12.3 years, FEV 97 ± 16% predicted); (2) explored their relationship with the presence of bacterial airway infection, defined by the presence of potentially pathogenic bacteria (PPB) at ≥10 3 colony-forming units/ml in BALF; (3) investigated their relationship with the quantity and proportion of Mɸ in BALF (flow cytometry); and, (4) studied their relationship with the severity of airflow limitation (FEV), GOLD grade and level of symptoms (CAT questionnaire). We found that: (1) airway levels of FABP4 (but not plasma ones) were reduced in COPD patients vs. controls [219.2 (96.0-319.6) vs. 273.4 (203.1-426.7) (pg/ml)/protein, p = 0.03 in BALF]; (2) COPD patients with airway infection had lower sputum FABP4 levels [0.73 (0.35-15.3) vs. 15.6 (2.0-29.4) ng/ml, p = 0.02]; (3) in COPD patients, the number and proportion of Mɸ were positively related with FABP4 levels in BALF; (4) BALF and sputum FABP4 levels were positively related with FEV, negatively with the CAT score, and lowest in GOLD grade D patients. Airway FABP4 levels are reduced in COPD patients, especially in those with airway infection and more severe disease. The relationship observed between Mɸ and airway FABP4 levels supports a role for FABP4 in the pathogenesis of airway infection and disease severity in COPD

    In Vitro Antifungal Activity of Ibrexafungerp (SCY-078) Against Contemporary Blood Isolates From Medically Relevant Species of Candida : A European Study

    Get PDF
    Ibrexafungerp (SCY-078) is the newest oral and intravenous antifungal drug with broad activity, currently undergoing clinical trials for invasive candidiasis. The aim of this study was to assess the in vitro activity of ibrexafungerp and comparators against a collection of 434 European blood isolates of Candida. Ibrexafungerp, caspofungin, fluconazole, and micafungin minimum inhibitory concentrations (MICs) were collected from 12 European laboratories for 434 blood isolates, including 163 Candida albicans, 108 Candida parapsilosis, 60 Candida glabrata, 40 Candida tropicalis, 29 Candida krusei, 20 Candida orthopsilosis, 6 Candida guilliermondii, 2 Candida famata, 2 Candida lusitaniae, and 1 isolate each of Candida bracarensis, Candida catenulata, Candida dubliniensis, and Candida kefyr. MICs were determined by the EUCAST broth microdilution method, and isolates were classified according to recommended clinical breakpoints and epidemiological cutoffs. Additionally, 22 Candida auris from different clinical specimens were evaluated. Ibrexafungerp MICs ranged from 0.016 to ≥8 mg/L. The lowest ibrexafungerp MICs were observed for C. albicans (geometric MIC 0.062 mg/L, MIC range 0.016-0.5 mg/L) and the highest ibrexafungerp MICs were observed for C. tropicalis (geometric MIC 0.517 mg/L, MIC range 0.06-≥8 mg/L). Modal MICs/MICs (mg/L) against Candida spp. were 0.125/0.06 for C. albicans, 0.5/0.5 for C. parapsilosis, 0.25/0.25 for C. glabrata, 0.5/0.5 for C. tropicalis, 1/1 for C. krusei, 4/2 for C. orthopsilosis, and 0.5/0.5 for C. auris. Ibrexafungerp showed activity against fluconazole- and echinocandin-resistant isolates. If adopting wild-type upper limits, a non-wild-type phenotype for ibrexafungerp was only observed for 16/434 (3.7%) isolates: 11 (4.6%) C. parapsilosis, 4 (5%) C. glabrata, and 1 (2.5%) C. tropicalis. Ibrexafungerp showed a potent in vitro activity against Candida
    corecore