88 research outputs found

    Análisis del efecto antimicrobiano de doce plantas medicinales de uso ancestral en Ecuador / Analysis of antimicrobial effect of twelve medicinal plants of ancient use in Ecuador

    Get PDF
    Los ejemplares de las especies vegetales Lippia citriodora K (cedrón), Ambrosia artemisifolia L (altamisa), Taraxacum officinale Weber (diente de león), Ageratum conyzoides L (mastrante), Piper carpunya Ruiz & Pav (guaviduca), Borago officinalis L (borraja), Coriandrum sativum L (cilantro), Melissa officinalis L (toronjil), Cymbopogon citratus S (hierba luisa), Artemisia absinthium L (ajenjo), Momordica charantia L (achochilla) y Moringa oleífera Lam (moringa) se recolectaron al azar en las localidades de Machala y Santa Rosa, Ecuador. Las hojas fueron lavadas, secadas, molidas y extraídas por maceración con metanol; los filtrados concentrados por evaporación a presión reducida. Para determinar la actividad antimicrobiana de los extractos metanólicos obtenidos, se utilizó la técnica de difusión en agar, mediante la cual éstos se probaron frente a cepas de bacterias Gram positiva (Staphyloccocus aureus) y Gram negativa (Escherichia coli y P. aeruginosa), y una cepa del hongo (Candida albicans). Todos los extractos analizados, a excepción de los de L. citriodora y A. conyzoides, exhibieron una acción bactericida contra todas las cepas bacterianas ensayadas, lo cual refleja la importancia de estas especies en la producción de fitofármacos antibióticos. T. officinale y P. carpunya presentaron un efecto antibacteriano alto contra E. coli; sin embargo, S. aureus no presentó sensibilidad frente los extractos de L. citriodora y P. carpunya. El bioensayo de actividad antifúngica realizado a los extractos de las especies estudiadas contra C. albicans, mostró que todos tienen acción fungicida alta, a excepción de T. officinale con un menor efecto inhibitorio del crecimiento fúngico. Se puede inferir que estas plantas constituyen una fuente promisoria de compuestos químicos antimicrobianos de gran valor farmacológico. ABSTRACTThe specimens of plant species Lippia citriodora K (cedrón), Ambrosia artemisifolia L (altamisa), Taraxacum officinale Weber (diente de león), Ageratum conyzoides L (mastrante), Piper carpunya Ruiz & Pav (guaviduca), Borago officinalis L (borraja), Coriandrum sativum L (cilantro), Melissa officinalis L (toronjil), Cymbopogon citratus S (hierba luisa), Artemisia absinthium L (ajenjo), Momordica charantia L (achochilla) y Moringa oleífera Lam (moringa) were collected randomly in the towns of Santa Rosa and Machala, Ecuador. The leaves were washed, dried, ground and extracted by maceration with methanol; the filtrates concentrated by evaporation under reduced pressure. A diffusion technique in agar was used to determine the antimicrobial activity of the obtained methanolic extracts, by which they were tested against strains of Gram-positive (Staphylococcus aureus) and Gram negative bacteria (Escherichia coli and P. aeruginosa), and a strain of fungus (Candida albicans). All extracts analyzed, except for those of L. citriodora and A. conyzoides showed a bactericidal action against all bacterial strains tested, reflecting the importance of these species in the production of herbal medicines antibiotics. T. officinale and P. carpunya showed a high antibacterial effect against E. coli; however, S. aureus did not show sensitivity to P. carpunya and L. citriodora extracts. The antifungal activity bioassay conducted to studied extracts against C. albicans, showed that all have high fungicidal action, except for T. officinale with less inhibitory effect of fungal growth. It can be inferred that these plants are a promising source of antimicrobial components of high pharmacological value

    The decline of dengue in the Americas in 2017: discussion of multiple hypotheses

    Get PDF
    OBJECTIVE: Since the 1980s, dengue incidence has increased 30-fold. However, in 2017, there was a noticeable reduction in reported dengue incidence cases within the Americas, including severe and fatal cases. Understanding the mechanism underlying dengue's incidence and decline in the Americas is vital for public health planning. We aimed to provide plausible explanations for the decline in 2017. METHODS: An expert panel of representatives from scientific and academic institutions, Ministry of Health officials from Latin America and PAHO/WHO staff met in October 2017 to propose hypotheses. The meeting employed six moderated plenary discussions in which participants reviewed epidemiological evidence, suggested explanatory hypotheses, offered their expert opinions on each and developed a consensus. RESULTS: The expert group established that in 2017, there was a generalised decreased incidence, severity and number of deaths due to dengue in the Americas, accompanied by a reduction in reported cases of both Zika and chikungunya virus infections, with no change in distribution among age groups affected. This decline was determined to be unlikely due to changes in epidemiological surveillance systems, as similar designs of surveillance systems exist across the region. Although sudden surveillance disruption is possible at a country or regional level, it is unlikely to occur in all countries simultaneously. Retrospective modelling with epidemiological, immunological and entomological information is needed. Host or immunological factors may have influenced the decline in dengue cases at the population level through immunity; however, herd protection requires additional evidence. Uncertainty remains regarding the effect on the outcome of sequential infections of different dengue virus (DENV) types and Zika virus (ZIKV), and vice versa. Future studies were recommended that examine the epidemiological effect of prior DENV infection on Zika incidence and severity, the epidemiological effect of prior Zika virus infection on dengue incidence and severity, immune correlates based on new-generation ELISA assays, and impact of prior DENV/other arbovirus infection on ZIKV immune response in relation to number of infections and the duration of antibodies in relation to interval of protection. Follow-up studies should also investigate whether increased vector control intensification activities contributed to the decline in transmission of one or more of these arboviruses. Additionally, proposed studies should focus on the potential role of vector competence when simultaneously exposed to various arboviruses, and on entomological surveillance and its impact on circulating vector species, with a goal of applying specific measures that mitigate seasonal occurrence or outbreaks. CONCLUSIONS: Multifactorial events may have accounted for the decline in dengue seen in 2017. Differing elements might explain the reduction in dengue including elements of immunity, increased vector control, and even vector and\or viruses changes or adaptations. Most of the results of this expert consensus group meeting are hypothetical and based on limited evidence. Further studies are needed

    Burosumab for the Treatment of Tumor‐Induced Osteomalacia

    Get PDF
    Tumor-induced osteomalacia (TIO) is caused by phosphaturic mesenchymal tumors producing fibroblast growth factor 23 (FGF23) and is characterized by impaired phosphate metabolism, skeletal health, and quality of life. UX023T-CL201 is an ongoing, open-label, phase 2 study investigating the safety and efficacy of burosumab, a fully human monoclonal antibody that inhibits FGF23, in adults with TIO or cutaneous skeletal hypophosphatemia syndrome (CSHS). Key endpoints were changes in serum phosphorus and osteomalacia assessed by transiliac bone biopsies at week 48. This report focuses on 14 patients with TIO, excluding two diagnosed with X-linked hypophosphatemia post-enrollment and one with CSHS. Serum phosphorus increased from baseline (0.52 mmol/L) and was maintained after dose titration from week 22 (0.91 mmol/L) to week 144 (0.82 mmol/L, p < 0.0001). Most measures of osteomalacia were improved at week 48: osteoid volume/bone, osteoid thickness, and mineralization lag time decreased; osteoid surface/bone surface showed no change. Of 249 fractures/pseudofractures detected across 14 patients at baseline, 33% were fully healed and 13% were partially healed at week 144. Patients reported a reduction in pain and fatigue and an increase in physical health. Two patients discontinued: one to treat an adverse event (AE) of neoplasm progression and one failed to meet dosing criteria (receiving minimal burosumab). Sixteen serious AEs occurred in seven patients, and there was one death; all serious AEs were considered unrelated to treatment. Nine patients had 16 treatment-related AEs; all were mild to moderate in severity. In adults with TIO, burosumab exhibited an acceptable safety profile and was associated with improvements in phosphate metabolism and osteomalacia

    Negative Supercoiling Creates Single-Stranded Patches of DNA That Are Substrates for AID–Mediated Mutagenesis

    Get PDF
    Antibody diversification necessitates targeted mutation of regions within the immunoglobulin locus by activation-induced cytidine deaminase (AID). While AID is known to act on single-stranded DNA (ssDNA), the source, structure, and distribution of these substrates in vivo remain unclear. Using the technique of in situ bisulfite treatment, we characterized these substrates—which we found to be unique to actively transcribed genes—as short ssDNA regions, that are equally distributed on both DNA strands. We found that the frequencies of these ssDNA patches act as accurate predictors of AID activity at reporter genes in hypermutating and class switching B cells as well as in Escherichia coli. Importantly, these ssDNA patches rely on transcription, and we report that transcription-induced negative supercoiling enhances both ssDNA tract formation and AID mutagenesis. In addition, RNaseH1 expression does not impact the formation of these ssDNA tracts indicating that these structures are distinct from R-loops. These data emphasize the notion that these transcription-generated ssDNA tracts are one of many in vivo substrates for AID

    Distinct Roles of Non-Canonical Poly(A) Polymerases in RNA Metabolism

    Get PDF
    Trf4p and Trf5p are non-canonical poly(A) polymerases and are part of the heteromeric protein complexes TRAMP4 and TRAMP5 that promote the degradation of aberrant and short-lived RNA substrates by interacting with the nuclear exosome. To assess the level of functional redundancy between the paralogous Trf4 and Trf5 proteins and to investigate the role of the Trf4-dependent polyadenylation in vivo, we used DNA microarrays to compare gene expression of the wild-type yeast strain of S. cerevisiae with either that of trf4Δ or trf5Δ mutant strains or the trf4Δ mutant expressing the polyadenylation-defective Trf4(DADA) protein. We found little overlap between the sets of transcripts with altered expression in the trf4Δ or the trf5Δ mutants, suggesting that Trf4p and Trf5p target distinct groups of RNAs for degradation. Surprisingly, most RNAs the expression of which was altered by the trf4 deletion were restored to wild-type levels by overexpression of TRF4(DADA), showing that the polyadenylation activity of Trf4p is dispensable in vivo. Apart from previously reported Trf4p and Trf5p target RNAs, this analysis along with in vivo cross-linking and RNA immunopurification-chip experiments revealed that both the TRAMP4 and the TRAMP5 complexes stimulate the degradation of spliced-out introns via a mechanism that is independent of the polyadenylation activity of Trf4p. In addition, we show that disruption of trf4 causes severe shortening of telomeres suggesting that TRF4 functions in the maintenance of telomere length. Finally, our study demonstrates that TRF4, the exosome, and TRF5 participate in antisense RNA–mediated regulation of genes involved in phosphate metabolism. In conclusion, our results suggest that paralogous TRAMP complexes have distinct RNA selectivities with functional implications in RNA surveillance as well as other RNA–related processes. This indicates widespread and integrative functions of TRAMP complexes for the coordination of different gene expression regulatory processes

    Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications

    Full text link
    Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425 and PI19/00321), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), European Regional Development Fund (FEDER), the Organización Nacional de Ciegos Españoles (ONCE), Fundación Ramón Areces, Fundación Conchita Rábago and the University Chair UAM-IIS-FJD of Genomic Medicine. Irene Perea-Romero is supported by a PhD fellowship from the predoctoral Program from ISCIII (FI17/00192). Ionut F. Iancu is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017-AI/BMD7256). Marta del Pozo-Valero is supported by a PhD grant from the Fundación Conchita Rábago. Berta Almoguera is supported by a Juan Rodes program from ISCIII (JR17/00020). Pablo Minguez is supported by a Miguel Servet program from ISCIII (CP16/00116). Marta Corton is supported by a Miguel Servet program from ISCIII (CPII17/00006). The funders played no role in study design, data collection, data analysis, manuscript preparation and/or publication decisions
    corecore