1,071 research outputs found

    Geometric phases in semiconductor spin qubits: Manipulations and decoherence

    Get PDF
    We describe the effect of geometric phases induced by either classical or quantum electric fields acting on single electron spins in quantum dots in the presence of spin-orbit coupling. On one hand, applied electric fields can be used to control the geometric phases, which allows performing quantum coherent spin manipulations without using high-frequency magnetic fields. On the other hand, fluctuating fields induce random geometric phases that lead to spin relaxation and dephasing, thus limiting the use of such spins as qubits. We estimate the decay rates due to piezoelectric phonons and conduction electrons in the circuit, both representing dominant electric noise sources with characteristically differing power spectra.Comment: 17 pages, 8 figures, published versio

    Zero Landau level in folded graphene nanoribbons

    Full text link
    Graphene nanoribbons can be folded into a double layer system keeping the two layers decoupled. In the Quantum Hall regime folds behave as a new type of Hall bar edge. We show that the symmetry properties of the zero Landau level in metallic nanoribbons dictate that the zero energy edge states traversing a fold are perfectly transmitted onto the opposite layer. This result is valid irrespective of fold geometry, magnetic field strength and crystallographic orientation of the nanoribbon. Backscattering suppression on the N=0 Hall plateau is ultimately due to the orthogonality of forward and backward channels, much like in the Klein paradox.Comment: Final published version, with supplementary material appendi

    Pseudo-diffusive magnetotransport in graphene

    Full text link
    Transport properties through wide and short ballistic graphene junctions are studied in the presence of arbitrary dopings and magnetic fields. No dependence on the magnetic field is observed at the Dirac point for any current cumulant, just as in a classical diffusive system, both in normal-graphene-normal and normal-graphene-superconductor junctions. This pseudo-diffusive regime is however extremely fragile respect to doping at finite fields. We identify the crossovers to a field-suppressed and a normal ballistic transport regime in the magnetic field - doping parameter space, and provide a physical interpretation of the phase diagram. Remarkably, pseudo-diffusive transport is recovered away from the Dirac point in resonance with Landau levels at high magnetic fields.Comment: 4+ pages, 2 figures. Minor corrections. Published version

    Majorana splitting from critical currents in Josephson junctions

    Full text link
    A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LNâ‰ξ, where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effectWe acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through Grant No. FIS2015-65706-P (MINECO/FEDER) (P.S.-J), No. FIS2015-64654-P (R.A.), No. FIS2016-80434-P (AEI/FEDER, EU) (E.P.) and the Ramón y Cajal programme through Grant No. RYC-2011-09345 (E.P). J.C. and A.B.S. acknowledge financial support from the Swedish Research Council (Vetenskapsrådet), the Göran Gustafsson Foundation, the Swedish Foundation for Strategic Research (SSF), and the Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows progra

    Universal scaling of current fluctuations in disordered graphene

    Full text link
    We analyze the full transport statistics of graphene with smooth disorder at low dopings. First we consider the case of 1D disorder for which the transmission probability distribution is given analytically in terms of the graphene-specific mean free path. All current cumulants are shown to scale with system parameters (doping, size, disorder strength and correlation length) in an identical fashion for large enough systems. In the case of 2D disorder, numerical evidence is given for the same kind of identical scaling of all current cumulants, so that the ratio of any two such cumulants is universal. Specific universal values are given for the Fano factor, which is smaller than the pseudodiffusive value of ballistic graphene (F=1/3) both for 1D (F=0.243) and 2D (F=0.295) disorder. On the other hand, conductivity in wide samples is shown to grow without saturation as \sqrt{L} and Log L with system length L in the 1D and 2D cases respectively.Comment: 9 pages, 7 figures. Published version, includes corrected figure for Fano facto

    Geometrical spin dephasing in quantum dots

    Get PDF
    We study spin-orbit mediated relaxation and dephasing of electron spins in quantum dots. We show that higher order contributions provide a relaxation mechanism that dominates for low magnetic fields and is of geometrical origin. In the low-field limit relaxation is dominated by coupling to electron-hole excitations and possibly 1/f1/f noise rather than phonons.Comment: Replaced with final published versio

    Nonlocality of Majorana modes in hybrid nanowires

    Full text link
    Spatial separation of Majorana zero modes distinguishes trivial from topological midgap states and is key to topological protection in quantum computing applications. Although signatures of Majorana zero modes in tunneling spectroscopy have been reported in numerous studies, a quantitative measure of the degree of separation, or nonlocality, of the emergent zero modes has not been reported. Here, we present results of an experimental study of nonlocality of emergent zero modes in superconductor-semiconductor hybrid nanowire devices. The approach takes advantage of recent theory showing that nonlocality can be measured from splitting due to hybridization of the zero mode in resonance with a quantum dot state at one end of the nanowire. From these splittings as well as anticrossing of the dot states, measured for even and odd occupied quantum dot states, we extract both the degree of nonlocality of the emergent zero mode, as well as the spin canting angles of the nonlocal zero mode. Depending on the device measured, we obtain either a moderate degree of nonlocality, suggesting a partially separated Andreev subgap state, or a highly nonlocal state consistent with a well-developed Majorana modeThis research was supported by Microsoft, the Danish National Research Foundation, the European Commission, and the Spanish Ministry of Economy and Competitiveness through Grants No. FIS2015-65706-P, No. FIS2015-64654-P, and No. FIS2016-80434-P (AEI/FEDER, EU), the Ramón y Cajal programme Grant No. RYC-2011-09345, and the María de Maeztu Programme for Units of Excellence in R&D (Grant No. MDM-2014-0377). C.M.M. acknowledges support from the Villum Foundation. M.-T.D. acknowledges support from State Key Laboratory of High Performance Computing, Chin

    A new species of sand racer, Psammodromus (Squamata: Lacertidae), from the Western Iberian Peninsula

    Get PDF
    [EN] A new species of lacertid lizard of the genus Psammodromus is described from the Iberian Peninsula. Genetic and recently published phenotypic data support the differentiation of Psammodromus hispanicus into three, and not as previously sug-gested two, distinct lineages. Age estimates, lineage allopatry, the lack of mitochondrial and nuclear haplotype sharing between lineages, ecological niche divergence, and the current biogeographic distribution, indicated that the three lineages correspond to three independent species. Here, we describe a new species, Psammodromus occidentalis sp. n., which is genetically different from the other sand racers and differentiated by the number of femoral pores, number of throat scales, snout shape, head ratio, green nuptial coloration, and number of supralabial scales below the subocular scale. We also pro-pose to upgrade the two previously recognized subspecies, Psammodromus hispanicus hispanicus Fitzinger, 1826 from central Spain and Psammodromus hispanicus edwardsianus (Dugès, 1829) from eastern Spain, to the species level: Psam-modromus hispanicus stat. nov. and Psammodromus edwardsianus stat. nov. Given that the holotype of Psammodromus hispanicus was lost, we designate a neotype. We also analysed museum specimens of P. blanci, P. microdactylus and P. algirus to describe differentiation of the Psammodromus hispanicus lineages/species from their closest relatives. Copyright © 2011 Magnolia Press.Peer Reviewe

    Viscoelastic behavior of a polyester resin concrete reinforced with nonmetallic bars under bending loads

    Get PDF
    This paper deals with the study of a highly durable polyester polymer concrete reinforced with glass fibre reinforced polymer rebars. The paper describes the properties of this specific concrete, which were tested using different experimental techniques such as porosimetry, scanning electron microscopy and petrography. Likewise, characterisation in a macro-scale was carried out to define the mechanical properties of the material (modulus of elasticity, stress-strain curve, ultimate strength and bond). Based on the latter properties, the paper presents a relatively simple method to estimate the ultimate bearing capacity of beams under bending load. The calculation method has been verified by testing beams and full-scale elements. At the end, and due to the viscoelastic nature of the polymer, several considerations will be made in order identify safety factors dependent on the loads nature: permanent loads (deferred deformations) and live loads.Peer ReviewedPostprint (author’s final draft
    corecore