439 research outputs found

    General covariance, and supersymmetry without supersymmetry

    Get PDF
    An unusual four-dimensional generally covariant and supersymmetric SU(2) gauge theory is described. The theory has propagating degrees of freedom, and is invariant under a local (left-handed) chiral supersymmetry, which is half the supersymmetry of supergravity. The Hamiltonian 3+1 decomposition of the theory reveals the remarkable feature that the local supersymmetry is a consequence of Yang-Mills symmetry, in a manner reminiscent of how general coordinate invariance in Chern-Simons theory is a consequence of Yang-Mills symmetry. It is possible to write down an infinite number of conserved currents, which strongly suggests that the theory is classically integrable. A possible scheme for non-perturbative quantization is outlined. This utilizes ideas that have been developed and applied recently to the problem of quantizing gravity.Comment: 17 pages, RevTeX, two minor errors correcte

    A study of open strings ending on giant gravitons, spin chains and integrability

    Full text link
    We systematically study the spectrum of open strings attached to half BPS giant gravitons in the N=4 SYM AdS/CFT setup. We find that some null trajectories along the giant graviton are actually null geodesics of AdS_5x S^5, so that we can study the problem in a plane wave limit setup. We also find the description of these states at weak 't Hooft coupling in the dual CFT. We show how the dual description is given by an open spin chain with variable number of sites. We analyze this system in detail and find numerical evidence for integrability. We also discover an interesting instability of long open strings in Ramond-Ramond backgrounds that is characterized by having a continuum spectrum of the string, which is separated from the ground state by a gap. This instability arises from accelerating the D-brane on which the strings end via the Ramond-Ramond field. From the integrable spin chain point of view, this instability prevents us from formulating the integrable structure in terms of a Bethe Ansatz construction.Comment: 38 pages+appendices, 9 figures. Uses JHEP3. v2: added reference

    BF Actions for the Husain-Kuchar Model

    Get PDF
    We show that the Husain-Kuchar model can be described in the framework of BF theories. This is a first step towards its quantization by standard perturbative QFT techniques or the spin-foam formalism introduced in the space-time description of General Relativity and other diff-invariant theories. The actions that we will consider are similar to the ones describing the BF-Yang-Mills model and some mass generating mechanisms for gauge fields. We will also discuss the role of diffeomorphisms in the new formulations that we propose.Comment: 21 pages (in DIN A4 format), minor typos corrected; to appear in Phys. Rev.

    Gravitational Instantons and Moduli Spaces of Topological 2-form Gravity

    Full text link
    A topological version of four-dimensional (Euclidean) Einstein gravity which we propose regards anti-self-dual 2-forms and an anti-self-dual part of the frame connections as fundamental fields. The theory describes the moduli spaces of conformally self-dual Einstein manifolds for the non-zero cosmological constant case and Einstein-Kahlerian manifold with the vanishing real first Chern class for the zero cosmological constant. In the non-zero cosmological constant case, we evaluate the index of the elliptic complex associated with the moduli space and calculate the partition function. We also clarify the moduli space and its dimension for the zero cosmological constant case which are related to the Plebansky's heavenly equations.Comment: 36pages, LaTex, TIT/HEP-247/COSMO-4

    Recycling universe

    Get PDF
    If the effective cosmological constant is non-zero, our observable universe may enter a stage of exponential expansion. In such case, regions of it may tunnel back to the false vacuum of an inflaton scalar field, and inflation with a high expansion rate may resume in those regions. An ``ideal'' eternal observer would then witness an infinite succession of cycles from false vacuum to true, and back. Within each cycle, the entire history of a hot universe would be replayed. If there were several minima of the inflaton potential, our ideal observer would visit each one of these minima with a frequency which depends on the shape of the potential. We generalize the formalism of stochastic inflation to analyze the global structure of the universe when this `recycling' process is taken into account.Comment: 43 pages, 10 figure

    1/N Effects in Non-Relativistic Gauge-Gravity Duality

    Full text link
    We argue that higher-curvature terms in the gravitational Lagrangian lead, via non-relativistic gauge-gravity duality, to finite renormalization of the dynamical exponent of the dual conformal field theory. Our argument includes a proof of the non-renormalization of the Schrodinger and Lifshitz metrics beyond rescalings of their parameters, directly generalizing the AdS case. We use this effect to construct string-theory duals of non-relativistic critical systems with non-integer dynamical exponents, then use these duals to predict the viscosity/entropy ratios of these systems. The predicted values weakly violate the KSS bound.Comment: 26 pages, late
    corecore