90 research outputs found

    Conductivity Study on Plasticized Solid bio-electrolytes CMC-NH4Br and Application in Solid-state Proton Batteries

    Get PDF
    This paper present the development of plasticized solid bio-electrolytes (PSBs) which has been accomplished by incorporating various composition of plasticizer namely ethylene carbonate (EC) with carboxy methylcellulose doped NH4Br via solution casting method. The plasticized polymer–salt ionic conduction of PSBs has been analyzed by electrical impedance spectroscopy. Plasticization using EC in PSBs system assists the enhancement of NH4Br dissociation and therefore increases the protonation process in the system. The highest ionic conductivity obtained for CMC−NH4Br containing with 25 wt. % NH4Br was achieved at 1.12 x 10-4 Scm-1 and improved to 3.31 x 10-3 Scm-1 when EC was added in PSBs system. The ionic conductivity-temperature for PSBs system was found to obey the Arrhenius relationships where the ionic conductivity increases with temperature. The solid-state proton batteries were assembled with the formation of Zn + ZnSO4.7H2O || highest conducting PSBs system || MnO2 and achieve with a maximum open circuit voltage (OCV) of 1.48 V at room temperature and showed good in rechargeablity performance with more than 10 cycles

    Characterization of Plasticized CMC-NH4BR Based Biopolymer Electrolyte and Electrochemical Studies on the Solid-State Batteries

    Get PDF
    Much research has been devoted to the preparation of solid polymer electrolytes made of various materials. Some of the wellknown are synthetic polymer materials (petroleum resources) but these polymers are high in cost and the depletion of petroleum resources coupled with increasing environmental regulation. For these reasons, a lot of effort has been made to develop the electrolytes using natural biopolymer materials. The increasing interest in green energy storage materials for electrochemical devices with the development of polymer as electrolytes candidate has attracted great attention recently. It can offer a number of high-value opportunities, provided that lower costs can be obtained besides environmental friendly. Due to this matter, the development of plasticized biodegradable polymer electrolytes (BPEs) has been accomplished in this work by incorporating various composition of EC with carboxy methylcellulose doped NH4Br via solution casting method. The plasticized polymer– salt complex formation and ionic conduction of BPEs have been analyzed through infrared spectroscopy and impedance measurement. Plasticization using EC in BPEs system helps the enhancement of NH4Br dissociation and therefore increases the protonation process in the system. The highest ionic conductivity obtained for CMC−NH4Br containing with 25 wt. % NH4Br was achieved at 1.12 x 10-4 S cm-1 and enhanced to 3.31 x 10-3 S cm-1 with addition of EC. The conductivity-temperature for BPEs system obeys the Arrhenius relation where the ionic conductivity increases with temperature. The electrochemical cell were fabricated with the configuration of Zn + ZnSO4.7H2O | BPEs system | MnO2 for the highest conductivity and produced a maximum open circuit voltage of 1.48 V at ambient temperature and showed good rechargeability

    A Comparative Study of Enhanced Nonlinear PI to Multivariable Nonlinear Plant

    Get PDF
    The static gains of PI controller have limitation to handle the process nonlinearities of the system. This suggests the development of enhanced nonlinear PI controller where a nonlinear gain function is cascaded to PI parameters. Two nonlinear gain functions are developed and the effectiveness of the control performance is investigated for two different control structures for a multivariable nonlinear wastewater treatment plant (WWTP). It was proved that superior output with the lower mean error was obtained by developed nonlinear PI specifically in the multivariable control structure. The developed nonlinear PI offers simpler control structure and easy implementation hence offering alternative control strategy for the multivariable system

    Efficacy of fungal and bacterial antagonists for controlling growth, FUM1 gene expression and fumonisin B 1 production by Fusarium verticillioides on maize cobs of different ripening stages

    Get PDF
    This study was carried out to examine the efficacy of two biocontrol agents (Clonostachys rosea 016, BCA1; Gram-negative bacterium, BCA5) for control of FUM1 gene expression and fumonisin B1 (FB1) production by F. verticillioides FV1 on maize cobs of different ripening stages: R3, Milk (0.985 aw); R4, Dough (0.976 aw); R5, Dent (0.958 aw). Initially, temporal studies on FUM1 gene expression and FB1 production were performed on maize kernels for up to 14 days. This revealed that day 10 was optimum for both parameters, and was used in the biocontrol studies. Maize cobs were inoculated with 50:50 mixtures of the pathogen:antagonist inoculum and incubated in environmental chambers to maintain the natural aw conditions for ten days at 25 and 30 °C. The growth rates of F. verticillioides FV1, the relative expression of the FUM1 gene and FB1 production were quantified. It was found that, aw × temp had significant impacts on growth, FUM1 gene expression and FB1 production by F. verticillioides FV1 on maize cobs of different maturities. The fungal antagonist (BCA1) significantly reduced FB1 contamination on maize cobs by > 70% at 25 °C, and almost 60% at 30 °C regardless of maize ripening stage. For the bacterial antagonist (BCA5) however, FB1 levels on maize cobs were significantly decreased only in some treatments. These results suggest that efficacy of antagonists to control mycotoxin production in ripening maize cobs needs to take account of the ecophysiology of the pathogen and the antagonists, as well as the physiological status of the maize during silking to ensure effective control

    Comparison between MEMD-LSSVM and MEMD-ARIMA in forecasting exchange rate

    Get PDF
    Due to the non-stationary and non-linearity behaviors of exchange rate data, an appropriate forecasting model that can capture these behaviors is crucial. This paper comparing the performance of modified empirical mode decomposition (EMD) and autoregressive integrated moving average (ARIMA) named as MEMD-ARIMA and modified empirical mode decomposition (EMD) and least squares support vector machine (LSSVM) named as MEMD-LSSVM in forecasting daily USD/TWD exchange rate. EMD technique is firstly used to decompose the exchange rate data that resulting in few intrinsic mode function (IMF) and one residual. In order to improve the result of the EMD so that more effective input can be provided to the forecasting models which are LSSVM and ARIMA, they are clustered into several groups via permutation distribution clustering (PDC). The successfulness of LSSVM in forecasting is depending on the input number selection. The problem is the input number selection is not based on any theories or techniques. Therefore, partial autocorrelation function (PACF) is used in this paper in determining the best number of input for LSSVM. This paper finds that the implementations of PDC has improved the performance of EMD-LSSVM and EMD-ARIMA and also suggest the PDC is suitable either for linear or non-linear model

    Carbonized rice husk and cocopeat as alternative media bed for aquaponic system

    Get PDF
    The study evaluates the suitability of carbonized rice husk and cocopeat substrates as alternative media bed in aquaponics unit for cultivation of red Nile tilapia and Gynura procumbens. Area occupied by the aquaponics unit is about 4.5 m2 and it was operated under equatorial climate conditions. Various substrates namely lightweight expanded clay aggregate (LECA), cocopeat, carbonized rice husk and a mixture of cocopeat-rice husk at ratio 1:1 were prepared using polybags for growing of the longevity spinach. The resultant effects from fish cultivation and plants growth on the water qualities and nitrification efficiency of the aquaponics unit were reported. The aquaponics unit were operated for twelve weeks and the values of pH, temperature, and dissolved oxygen level were measured to be within the range of 6.4-6.9, 27.7-29oC, and 5.5-7 mg·L-1, respectively. Survival rate for fish was 98% with specific growth rate (SGR) and food conversion ratio (FCR) of 6.9% per day and 1.13, respectively. Nutrient deficiency was not evident and plants showed healthy growth with harvest yield ranging between 3.6 and 3.9 kg·m-2. Results attained signified the suitability of utilizing carbonized rice husk and cocopeat as alternatives media bed compared to commercial media bed such as LECA

    Shelf life extension of ambient-stored banana cake using banana powder

    Get PDF
    Maintaining the quality of bakery products is vital for consumers’ health and preference. Since bakery products are intermediate-moisture foods, spoilage by moulds is among the major causes of shelf life reduction. In the present work, the effects of substituting banana purée with banana powder to extend the shelf life of banana cakes were investigated over a ten-day storage period. Three types of banana cake were made using banana purée (control), laboratory-formulated powder (LP), and commercial powder (CP). Results indicated a significant difference in moisture contents and water activities between all treatments in which LP and CP exhibited mould growth at day 9 compared to day 5 in control. For fungal load, LP yielded the lowest CFU by the end of storage period. Although significant differences in texture and appearance were noted between all treatments, untrained sensory panellists scored LP as acceptable. Further works are therefore warranted to assess LP’s commercialisation potentials

    Association of vital pulp therapy outcomes with tooth type, arch location, treatment type, and number of surfaces destroyed in deciduous teeth: A retrospective study

    Get PDF
    There is a paucity of information concerning vital pulp treatment outcomes in the undergraduate teaching setting. This study aimed to determine which type of deciduous molar, arch location, type of vital pulp therapy, and the number of carious surfaces involved had a better prognosis when carried out by undergraduate dental students. The method used was the review of clinical records of 590 patients with 600 deciduous molars, that visited the outpatient undergraduate dental clinics for vital pulp therapy. Statistical analysis used to determine the associations of tooth type, arch location, treatment type, and the number of carious surfaces involved in successful outcomes was logistic regression analysis with significance set at p < 0.05. According to the regression analysis model results, there was a significant association based on tooth type (p < 0.05) and arch location (p = 0.003). In addition, there was a significant association based on the type of treatment performed (p = 0.036). However, there was no significant association in success rates based on the number of carious surfaces involved (p = 0.873). In conclusion, second deciduous molars and maxillary deciduous molars had a better overall prognosis, and indirect pulp therapy was revealed to be more highly associated with successful treatment outcomes in comparison to ferric sulfate pulpotomy in our setting

    Crosstalk-aware multiple error detection scheme based on two-dimensional parities for energy efficient network on chip

    Get PDF
    Achieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number of wires. In addition, it has small penalty on the network performance, represented by the average latency and comparable codec area overhead to other schemes

    Air quality modelling using chemometric techniques

    Get PDF
    The datasets of air quality parameters for three years (2012-2014) were applied. HACA gave the result of three different groups of similarity based on the characteristics of air quality parameters. DA shows all seven parameters (CO, O3, PM10, SO2, NOx, NO and NO2) gave the most significant variables after stepwise backward mode. PCA identifies the major source of air pollution is due to combustion of fossil fuels in motor vehicles and industrial activities. The ANN model shows a better prediction compared to the MLR model with R2 values equal to 0.819 and 0.773 respectively. This study presents that the chemometric techniques and modelling become an excellent tool in API assessment, air pollution source identification, apportionment and can be setbacks in designing an API monitoring network for effective air pollution resources management
    corecore