65 research outputs found

    Distinct Time Effects of Vaccination on Long-Term Proliferative and IFN-γ–producing T Cell Memory to Smallpox in Humans

    Get PDF
    Residual immunity to the smallpox virus raises key questions about the persistence of long-term immune memory in the absence of antigen, since vaccination ended in 1980. IFN-γ–producing effector–memory and proliferative memory T cells were compared in 79 vaccinees 13–25 yr after their last immunization and in unvaccinated individuals. Only 20% of the vaccinees displayed both immediate IFN-γ–producing effector–memory responses and proliferative memory responses at 6 d; 52.5% showed only proliferative responses; and 27.5% had no detectable vaccinia-specific responses at all. Both responses were mediated by CD4 and CD8 T cells. The vaccinia-specific IFN-γ–producing cells were composed mainly of CD4Pos CD45RANeg CD11aHi CD27Pos and CCR7Neg T cells. Their frequency was low but could be expanded in vitro within 7 d. Time since first immunization affected their persistence: they vanished 45 yr after priming, but proliferative responses remained detectable. The number of recalls did not affect the persistence of residual effector–memory T cells. Programmed revaccination boosted both IFN-γ and proliferative responses within 2 mo of recall, even in vaccinees with previously undetectable residual effector–memory cells. Such long-term maintenance of vaccinia-specific immune memory in the absence of smallpox virus modifies our understanding of the mechanism of persistence of long-term memory to poxviruses and challenges vaccination strategies

    Human immunodeficiency virus type-1 (HIV-1) continues to evolve in presence of broadly neutralizing antibodies more than ten years after infection.

    Get PDF
    BACKGROUND: The evolution of HIV-1 and its immune escape to autologous neutralizing antibodies (Nabs) during the acute/early phases of infection have been analyzed in depth in many studies. In contrast, little is known about neither the long-term evolution of the virus in patients who developed broadly Nabs (bNabs) or the mechanism of escape in presence of these bNabs. RESULTS: We have studied the viral population infecting a long term non progressor HIV-1 infected patient who had developed broadly neutralizing antibodies toward all tier 2/3 viruses (6 clades) tested, 9 years after infection, and was then followed up over 7 years. The autologous neutralization titers of the sequential sera toward env variants representative of the viral population significantly increased during the follow-up period. The most resistant pseudotyped virus was identified at the last visit suggesting that it represented a late emerging escape variant. We identified 5 amino acids substitutions that appeared associated with escape to broadly neutralizing antibodies. They were V319I/S, R/K355T, R/W429G, Q460E and G/T463E, in V3, C3 and V5 regions. CONCLUSION: This study showed that HIV-1 may continue to evolve in presence of both broadly neutralizing antibodies and increasing autologous neutralizing activity more than 10 years post-infection

    Characterization of pandemic influenza immune memory signature after vaccination or infection

    Get PDF
    International audienceThe magnitude, quality, and maintenance of immunological memory after infection or vaccination must be considered for future design of effective influenza vaccines. In 2009, the influenza pandemic produced disease that ranged from mild to severe, even fatal, illness in infected healthy adults and led to vaccination of a portion of the population with the adjuvanted, inactivated influenza A(H1N1)pdm09 vaccine. Here, we have proposed a multi-parameter quantitative and qualitative approach to comparing adaptive immune memory to influenza 1 year after mild or severe infection or vaccination. One year after antigen encounter, severely ill subjects maintained high levels of humoral and polyfunctional effector/memory CD4+^+ T cells responses, while mildly ill and vaccinated subjects retained strong cellular immunity, as indicated by high levels of mucosal homing and degranulation markers on IFN-γ+\gamma^+ antigen-specific T cells. A principal component analysis distinguished 3 distinct clusters of individuals. The first group comprised vaccinated and mildly ill subjects, while clusters 2 and 3 included mainly infected individuals. Each cluster had immune memory profiles that differed in magnitude and quality. These data provide evidence that there are substantial similarities between the antiinfluenza response that mildly ill and vaccinated individuals develop and that this immune memory signature is different from that seen in severely ill individuals

    : PLoS One

    Get PDF
    International audienceIn 31 participants who started first-line antiretroviral therapy in the NEAT 001/ANRS 143 clinical trial, we found after 96 weeks a statistically significant increase in blood telomere length (TL) of 0.04 (T/S Ratio) (p = 0.03). This increase was positively correlated with both the change in the percentage of CD4+ T-cells and with the decrease of CD38+ molecules on Central Memory CD8+ and negatively correlated with the change in the percentage of CD4+ Effector Memory cells. Increase in TL could be an expression of immune reconstitution and the associated decrease in immune activation. We acknowledge for the low statistical power due to the small sample size and the potential for false positive results due to multiple testing. Hence, further studies are needed to confirm these observations

    PLoS Pathog

    Get PDF
    The low pathogenicity and replicative potential of HIV-2 are still poorly understood. We investigated whether HIV-2 reservoirs might follow the peculiar distribution reported in models of attenuated HIV-1/SIV infections, i.e. limited infection of central-memory CD4 T lymphocytes (TCM). Antiretroviral-naive HIV-2 infected individuals from the ANRS-CO5 (12 non-progressors, 2 progressors) were prospectively included. Peripheral blood mononuclear cells (PBMCs) were sorted into monocytes and resting CD4 T-cell subsets (naive [TN], central- [TCM], transitional- [TTM] and effector-memory [TEM]). Reactivation of HIV-2 was tested in 30-day cultures of CD8-depleted PBMCs. HIV-2 DNA was quantified by real-time PCR. Cell surface markers, co-receptors and restriction factors were analyzed by flow-cytometry and multiplex transcriptomic study. HIV-2 DNA was undetectable in monocytes from all individuals and was quantifiable in TTM from 4 individuals (median: 2.25 log10 copies/106 cells [IQR: 1.99-2.94]) but in TCM from only 1 individual (1.75 log10 copies/106 cells). HIV-2 DNA levels in PBMCs (median: 1.94 log10 copies/106 PBMC [IQR = 1.53-2.13]) positively correlated with those in TTM (r = 0.66, p = 0.01) but not TCM. HIV-2 reactivation was observed in the cells from only 3 individuals. The CCR5 co-receptor was distributed similarly in cell populations from individuals and donors. TCM had a lower expression of CXCR6 transcripts (p = 0.002) than TTM confirmed by FACS analysis, and a higher expression of TRIM5 transcripts (p = 0.004). Thus the low HIV-2 reservoirs differ from HIV-1 reservoirs by the lack of monocytic infection and a limited infection of TCM associated to a lower expression of a potential alternative HIV-2 co-receptor, CXCR6 and a higher expression of a restriction factor, TRIM5. These findings shed new light on the low pathogenicity of HIV-2 infection suggesting mechanisms close to those reported in other models of attenuated HIV/SIV infection models

    Superior control of HIV-1 replication by CD8+T cells is reflected by their avidity, polyfunctionality, and clonal turnover

    Get PDF
    The key attributes of CD8+ T cell protective immunity in human immunodeficiency virus (HIV) infection remain unclear. We report that CD8+ T cell responses specific for Gag and, in particular, the immunodominant p24 epitope KK10 correlate with control of HIV-1 replication in human histocompatibility leukocyte antigen (HLA)–B27 patients. To understand further the nature of CD8+ T cell–mediated antiviral efficacy, we performed a comprehensive study of CD8+ T cells specific for the HLA-B27–restricted epitope KK10 in chronic HIV-1 infection based on the use of multiparametric flow cytometry together with molecular clonotypic analysis and viral sequencing. We show that B27-KK10–specific CD8+ T cells are characterized by polyfunctional capabilities, increased clonal turnover, and superior functional avidity. Such attributes are interlinked and constitute the basis for effective control of HIV-1 replication. These data on the features of effective CD8+ T cells in HIV infection may aid in the development of successful T cell vaccines

    Identification of natural killer markers associated with fatal outcome in COVID-19 patients

    Get PDF
    IntroductionIncreasing evidence has shown that coronavirus disease 19 (COVID-19) severity is driven by a dysregulated immunological response. Previous studies have demonstrated that natural killer (NK) cell dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of NK cell markers as a driver of death in the most critically ill patients.MethodsWe enrolled 50 non-vaccinated hospitalized patients infected with the initial virus or the alpha variant of SARS-CoV-2 with moderate or severe illness, to evaluate phenotypic and functional features of NK cells.ResultsHere, we show that, consistent with previous studies, evolution NK cells from COVID-19 patients are more activated, with the decreased activation of natural cytotoxicity receptors and impaired cytotoxicity and IFN-γ production, in association with disease regardless of the SARS-CoV-2 strain. Fatality was observed in 6 of 17 patients with severe disease; NK cells from all of these patients displayed a peculiar phenotype of an activated memory-like phenotype associated with massive TNF-α production.DiscussionThese data suggest that fatal COVID-19 infection is driven by an uncoordinated inflammatory response in part mediated by a specific subset of activated NK cells
    corecore