987 research outputs found

    Strain induced coherent dynamics of coupled carriers and Mn spins in a quantum dot

    Full text link
    We report on the coherent dynamics of the spin of an individual magnetic atom coupled to carriers in a semiconductor quantum dot which has been investigated by resonant photoluminescence of the positively charged exciton (X+). We demonstrate that a positively charged CdTe/ZnTe quantum dot doped with a single Mn atom forms an ensemble of optical Lambda systems which can be addressed independently. We show that the spin dynamics of the X+Mn complex is dominated by the electron-Mn exchange interaction and report on the coherent dynamics of the electron-Mn spin system that is directly observed in the time domain. Quantum beats reflecting the coherent transfer of population between electron-Mn spin states, which are mixed by an anisotropic strain in the plane of the quantum dot, are clearly observed. We finally highlight that this strain induced coherent coupling is tunable with an external magnetic field

    Resonant photoluminescence and dynamics of a hybrid Mn-hole spin in a positively charged magnetic quantum dot

    Full text link
    We analyze, through resonant photoluminescence, the spin dynamics of an individual magnetic atom (Mn) coupled to a hole in a semiconductor quantum dot. The hybrid Mn-hole spin and the positively charged exciton in a CdTe/ZnTe quantum dot forms an ensemble of Λ\Lambda systems which can be addressed optically. Auto-correlation of the resonant photoluminescence and resonant optical pumping experiments are used to study the spin relaxation channels in this multilevel spin system. We identified for the hybrid Mn-hole spin an efficient relaxation channel driven by the interplay of the Mn-hole exchange interaction and the coupling to acoustic phonons. We also show that the optical Λ\Lambda systems are connected through inefficient spin-flips than can be enhanced under weak transverse magnetic field. The dynamics of the resonant photoluminescence in a p-doped magnetic quantum dot is well described by a complete rate equation model. Our results suggest that long lived hybrid Mn-hole spin could be obtained in quantum dot systems with large heavy-hole/light-hole splitting

    Shot Noise in Linear Macroscopic Resistors

    Get PDF
    We report on a direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. Present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.Comment: 10 pages, 5 figure

    6-channel CMOS-based instrument for optical absorption spectroscopy and chemical identification

    Get PDF
    A multichannel portable instrument for on-chip optical absorption spectroscopy is presented. The system can house photonic chips having up to 6 sensing sites operating in parallel, allowing real-time simultaneous detection of multiple chemicals. A 6-channel CMOS lock-in front-end performs the amplification and demodulation of the signals from the integrated light detectors, while an FPGA is chosen for signal acquisition and analysis. A digital real-time ratiometric processing cancels out the effect of laser power fluctuations to achieve high sensitivity in monitoring the presence of the analytes, as demonstrated with the detection of an acetone sample. Compact size for portability, real-time parallel detection and flexible FPGA processing make this system suitable for environmental investigations on many different pollutants, both in the near- and mid-infrared wavelength range

    Lipoprotein(a) Lowering-From Lipoprotein Apheresis to Antisense Oligonucleotide Approach

    Get PDF
    It is well-known that elevated lipoprotein(a)-Lp(a)-levels are associated with a higher risk of cardiovascular (CV) mortality and all-cause mortality, although a standard pharmacotherapeutic approach is still undefined for patients with high CV risk dependent on hyperlipoproteinemia(a). Combined with high Lp(a) levels, familial hypercholesterolemia (FH) leads to a greater CVD risk. In suspected FH patients, the proportion of cases explained by a rise of Lp(a) levels ranges between 5% and 20%. In the absence of a specific pharmacological approach able to lower Lp(a) to the extent required to achieve CV benefits, the most effective strategy today is lipoprotein apheresis (LA). Although limited, a clear effect on Lp(a) is exerted by PCSK9 antagonists, with apparently different mechanisms when given with statins (raised catabolism) or as monotherapy (reduced production). In the era of RNA-based therapies, a new dawn is represented by the use of antisense oligonucleotides APO(a)Lrx, able to reduce Lp(a) from 35% to over 80%, with generally modest injection site reactions. The improved knowledge of Lp(a) atherogenicity and possible prevention will be of benefit for patients with residual CV risk remaining after the most effective available lipid-lowering agents

    GTE. A new software for gravitational terrain effect computation: theory and performances

    Get PDF
    The computation of the vertical attraction due to the topographic masses, the so-called Terrain Correction, is a fundamental step in geodetic and geophysical applications: it is required in high-precision geoid estimation by means of the remove–restore technique and it is used to isolate the gravitational effect of anomalous masses in geophysical exploration. The increasing resolution of recently developed digital terrain models, the increasing number of observation points due to extensive use of airborne gravimetry in geophysical exploration and the increasing accuracy of gravity data represents nowadays major issues for the terrain correction computation. Classical methods such as prism or point masses approximations are indeed too slow while Fourier based techniques are usually too approximate for the required accuracy. In this work a new software, called Gravity Terrain Effects (GTE), developed to guarantee high accuracy and fast computation of terrain corrections is presented. GTE has been thought expressly for geophysical applications allowing the computation not only of the effect of topographic and bathymetric masses but also those due to sedimentary layers or to the Earth crust-mantle discontinuity (the so-called Moho). In the present contribution, after recalling the main classical algorithms for the computation of the terrain correction we summarize the basic theory of the software and its practical implementation. Some tests to prove its performances are also described showing GTE capability to compute high accurate terrain corrections in a very short time: results obtained for a real airborne survey with GTE ranges between few hours and few minutes, according to the GTE profile used, with differences with respect to both planar and spherical computations (performed by prism and tesseroid respectively) of the order of 0.02 mGal even when using fastest profiles

    Deployment and design of multiantenna solutions for fixed WiMAX systems

    Get PDF
    WiMax has already attracted the attention of operators and manifacturing industries for its promise of large throughput and coverage in broadband wireless access. However, towards the goal of an efficient deployment of this technology, a thorough analysis of its performance in presence of frequency reuse under realistic traffic conditions is mandatory. In particular, an important performance limiting factor is the inter-cell interference, which has strong non-stationary features. This paper investigates the deployment of multi-antenna base stations and the related design of signal processing algorithms for interference mitigation, for the uplink of IEEE 802.16-2004 systems. Extensive numerical results for realistic interference models show the advantages of the proposed multi-antenna system
    • …
    corecore